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Abstract. We study a class of models used with success in the modelling of
climatological sequences. These models are based on the notion of renewal.
At first, we examine the probabilistic aspects of these models to afterwards
study the estimation of their parameters and their asymptotical properties,
in particular the consistence and the normality. We will discuss for appli-
cations, two particular classes of alternating renewal processes at discrete
time. The first class is defined by laws of sojourn time that are translated
negative binomial laws and the second class, suggested by Green is deduced
from alternating renewal process in continuous time with sojourn time laws
which are exponential laws with parameters α0 and α1 respectively.

Introduction. In this paper we study a class of alternating renewal pro-

cesses in discrete time with values in {0, 1}. This kind of processes has numerous

applications, namely in climatology where they are used with success in the mod-

elling of climatological sequences according to the wetness or the dryness features
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of days (Lebreton [10], Buishand [4], Green [7]). These processes are entirely de-

scribed by their sojourn times laws in the states 0 and 1. Firstly, let us recall the

probabilistic aspects of the model such as the stationarity of the second order,

the marginal laws of finite dimension and the partial sum laws. Concerning the

statistical aspect, we suggest a number of estimations of the model parameters

and their asymptotic properties, particularly the consistency and the normality

under the hypothesis that the means of the sojourn time laws are finite. Recently,

Mitov and al. [11] and Mitov [12] have established some results having a very

close relation with the topic of our paper.

For illustration, we also examine two particular classes of alternating re-

newal processes in discrete time. The first is defined by the sojourn time of the

translated negative binomial laws (cf. [4, 10]), the second suggested by Green [7],

is deduced from alternating renewal process in continuous time and with sojourn

time laws which are exponential laws with the parameters α0 and α1.

1. Definition and probabilistic characteristics. The considered

models are based on the hypothesis that each change state of the phenomenon

depends on the past only through the state of that instant. This is indeed true

since for every n > 1 and (x0, . . . , xn) ∈ {0, 1}n+1

P (Xn = xn/Xn−1 = xn−1, . . . ,X0 = x0)

= P (Xn = xn/Xn−1 = xk, . . . ,Xk = xk,Xk−1 = xk−1)

where

k =







1 if x0 = · · · = xn−1

sup
1≤t≤n−1

{xt−1 6= xt} else.

Let T i
n be the nth entry date in the state i, and Di

n be the nth sojourn

time in the state i, for i ∈ {0, 1}. We consider
(

T i
n;n ≥ 1

)

and
(

Di
n;n ≥ 1

)

for

i ∈ {0, 1}, the sequences of the entry dates and the sojourn times in the state i

defined by:

T i
1 = inf {t ≥ 0 : xt = i} ; Di

1 = inf
{

t ≥ T i
1 : xt = 1 − i

}

− T i
1;

T i
n = inf

{

t ≥ T i
n−1 + Di

n−1 : xt = i
}

;

Di
n = inf

{

t ≥ T i
n : xt = 1 − i

}

− T i
n; n ≥ 2.

We notice that on the set {X0 = i}, i ∈ {0, 1}, we have

0 = T i
1 < T 1−i

1 < T i
2 < T 1−i

2 < · · · < T i
n < T 1−i

n < T i
n+1 < · · ·
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D1−i
n = T i

n − T 1−i
n−1 and T 1−i

n = T i
n + Di

n, n ≥ 1.

As p̂0=(p̂0
n : n≥1), p̂1=(p̂1

n : n≥1), p0=(p0
n : n≥1), p1=(p1

n : n≥1) four

probability laws on N
∗ are obtained. Let p be a real number in [0, 1].

According to Gregoire [8], we define

Definition 1. A time series (Xt; t ∈ N) is said to be an alternating rene-

wal process with parameters
(

p, p̂0, p̂1, p0, p1
)

if P (X0 = 1) = p and for i ∈ {0, 1},
conditioned on X0 = i, the sojourn times Di

n; (n ≥ 1) (resp. D1−i
n ; (n ≥ 1)) are

independent having as law p̂i for n = 1, and having the same law pi for n ≥ 2

(resp. having as law p1−i for n ≥ 1), the sequences
(

Di
n;n ≥ 1

)

and
(

D1−i
n ;n ≥ 1

)

are also mutually independent.

The p0 and p1 laws are respectively called sojourn time laws in the states

0 and 1. As for p̂0 and p̂1 they are called waiting laws.

About the second order stationarity of the alternating renewal process,

we can further point out (cf. Grégoire [8]):

Theorem 1. Let (Xt; t ∈ N) be an alternating renewal process with the

parameters
(

p, p̂0, p̂1, p0, p1
)

. If the laws p0 and p1 are aperiodic and admit mo-

ments of the first order m0 and m1, then (Xt) is a stationary process only if

p =
m1

m0 + m1
and p̂i

k =
1

mi

∑

l≥0

pi
k+l, ∀k ≥ 1 and i ∈ {0, 1} .

Thus, a stationary alternating renewal process is uniquely determined by

the sojourn time laws p0 and p1. We define RA
(

p0, p1
)

the class of the stationary

alternating renewal processes with the parameters p0 and p1.

The covariance function γ
X

(.) of the process (Xt) ∈ RA
(

p0, p1
)

is entirely

determined by the transition probabilities P (Xh = 1/X0 = 1) and these can be

determined by simple recurrence.

Finite dimension marginal laws and partial sum laws. We define

Y 0
n and Y 1

n to be the number of 0−sequences and 1−sequences,

starting and ending over the period {0, 1, . . . , n}. If N ij
n indicates the number of

transitions from state i to state j between instant 0 and instant n, then

Y 0
n = sup

{

N10
n + xn − 1, 0

}

and Y 1
n = sup

{

N01
n − xn, 0

}

,

∆0
1, . . . ,∆

0
k, . . . (resp. ∆1

1, . . . ,∆
1
k, . . . .) are the durations of successive

sequences of 0 (resp. of 1) appearing after the instant 0,

∆n = inf
{

n + 1,∆0
1.1{X=0} + ∆1

1.1{X=1}

}

is the spent time on the

period {0, 1, . . . , n} in the initial state from the instant 0 (until the first possible

instant for the change of state),
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Γn is the spent time in the final state from the instant

τn = inf {t ≥ 0 : Xt = Xt+1 = . . . . = Xn}.
Clearly, Γn can be written thus :

Γn = n + 1 − ∆n −
Y 0

n
∑

k=1

∆0
k −

Y 1
n
∑

l=1

∆1
l

We accept conventionaly that when Y 0
n (resp. Y 1

n ) is zero, the correspond-

ing sum is also zero.

The following result can be easily checked:

Proposition 1. Let (Xt; t ∈ N) be a stationary alternating renewal

process with parameters p0 and p1 with respective means m0 and m1. The joint

law of the variables X0, . . . ,Xn is written

Pn(x0, . . . , xn) =







































px0 (1 − p)1−x0 .
∑

k≥n+1

(

p̂1
k

)x0 .
(

p̂0
k

)1−x0 if δ = n + 1,

px0 (1 − p)1−x0 .
(

p̂1
δ

)x0 .
(

p̂0
δ

)1−x0

y0

∏

k=1

p0
δ0

k

.
y1

∏

l=1

p1
δ1

l

× ∑

m≥k

(

p1
m

)xn .
(

p0
m

)1−xn if δ ≤ n,

for (x0, . . . , xn) ∈ {0, 1}n+1, and δ, δ0
1 , . . . , δ0

k, . . ., δ1
1 , . . . , δ1

l , . . . , γ, γ0, γ1 indicat-

ing the respective values of ∆n, ∆0
1, . . . ,∆

0
k, . . . ,∆

1
1, . . . ,∆

1
l , . . . ,Γn, Y 0

n , Y 1
n for the

observation (x0, . . . , xn), with the convention that when y0 = 0 (resp. y1 = 0),

then the corresponding product equals 1.

It appears that the statistics
(

X0,∆n, Y i
n,∆i

1, . . . ,∆
i
Y i

n

, i ∈ {0, 1}
)

is suf-

ficient.

As for the partial sum laws, we apply to the alternating case, Elliot’s [6]

and Cox’s [5] methods presented in the field of ordinary renewal process. We

thus are led (Buishand [4]) to a computing algorithm for the probability law of

the variable S1
n =

n
∑

t=0
Xt :

Proposition 2. Let (Xt; t ∈ N) be a stationary alternating renewal pro-

cess with the parameters p0 and p1 having for respective means m0 and m1. We

have

P
(

S1
n = m

)

=
1

m0 + m1

[

m0.Q
0
n (m) + m1.Q

1
n (m)

]

,(1)
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where Qi
n (m) = P

(

S1
n = m | X0 = i

)

, for i ∈ {0, 1} and 0 ≤ m ≤ n.

In particular, the probability that the process remains in the state 1 over the period

{0, 1, . . . , n}, is

P
(

S1
n = n + 1

)

=
1

m0 + m1

∑

l≥1

l.p1
n+l.(2)

The relation (1) is obvious and the law of the S1
n would be entirely deter-

mined once the probabilities Qi
n (m) are known.

According to Lebreton [10], the probabilities Qi
n (m) are provided by the

recurrence as follows:

for n = 0: Qi
0 (0) = 1 − δi1 and Qi

0 (1) = δi1,

for n ≥ 1: Q0
n (n + 1) = Q1

n (0) = 0, Q0
n (0) =

∑

l≥n+1

p̂0
l ,

Q1
n (n + 1) =

∑

l≥n+1

p̂1
l , Q0

n (n) =
1

m0

∑

l≥n

p1
l and Q1

n (1) =
1

m1

∑

l≥n

p0
l ,

for n ≥ 2, 1 ≤ m ≤ n − 1 :

Q0
n (m) =

n−m
∑

l=1

p̂0
l .R

0
n−l (m) and Q1

n (m) =
∑m−1

l=0 p̂1
l .R

1
n−l (m − l),

where

Ri
n (m) = P

(

S1
n = m | X0 = i,X1 = 1 − i

)

,

for i ∈ {0, 1} and m = 0, 1, . . . , n.

Once more, we determine the probabilities Ri
n (m), in the following lemma:

Lemma 1. We have

for n = 0 :

Ri
0 (1) = δi1 and Ri

0 (0) = 1 − δi1.

for n ≥ 1 :

R0
n (0) = R0

n (n + 1) = R1
n (0) = R1

n (n + 1) = 0,

R0
n (n) = m1.p̂

1
n, R1

n (n) = m0.p̂
0
n

and

R0
n (1) =

{

1 if n = 1
m0.p

1
1.p̂

0
n−1 if n ≥ 2

, R1
n (1) =

{

1 if n = 1
m1.p

0
1.p̂

1
n−1 if n ≥ 2
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for n ≥ 2, 2 ≤ m ≤ n :

R1
n (m) =

n−m
∑

l=1

p0
l .R

0
n−l (m − 1) and R0

n (m) =
m
∑

l=1

p1
l .R

1
n−l (m − l + 1) .

P r o o f. The results of first two cases can be easily obtained and for n ≥ 2

and 2 ≤ m ≤ n, we can write

m
∑

l=1

P



X1 = 1, . . . ,Xl = 1,Xl+1 = 0,

n
∑

j=l

Xj = m − l + 1 | X0 = 0,X1 = 1





=

m
∑

l=1

P (X1 = 1, . . . ,Xl = 1,Xl+1 = 0 | X0 = 0,X1 = 1)

×P





n
∑

j=l

Xj = m − l + 1 | Xl = 1,Xl+1 = 0



 ,

that is

R0
n (m) =

m
∑

l=1

p1
l .R

1
n−l (m − l + 1) .

The proof is similar for R1
n (m). �

Persistences. We define the persistence at the nth day of the state i,

i ∈ {0, 1}, as being the probability that the sojourn in the state i lasts strictly

more than n days, knowing that it has lasted n days. We write it thus

qi
n = P (Xn+1 = i | X0 = 1 − i,X1 = i, . . . ,Xn = i) .

The following relation is easily set:

qi
n = 1 − pi

n
∑

k≥n

pi
k

.(3)

The sequences
(

qi
n : n ≥ 1

)

of the persistences are important characteristics of a

model (specially in climatology). We are interested in some properties such as

the monotony and the behaviour when n tends to +∞.

Examples

1. Alternating renewal process for sojourn time laws with translated neg-

ative binomial.
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Let the sojourn time laws pi are translated negative binomial laws with the pa-

rameters
(

µi, ri
)

, i ∈ {0, 1} (i.e.

pi
k =

(

ri
)

k−1

(k − 1)!
.

(

1 +
µi

ri

)−r

.

(

µi

µi + ri

)k−1

; k ≥ 1,

where
(

ri
)

k
=
(

ri + k − 1
)

.
(

ri + k − 2
)

. . .
(

ri + 1
)

.ri if k ≥ 1 and
(

ri
)

0
= 1, µ0,

r0 and µ1, r1 are positive real numbers). The pi law have as mean mi = µi + 1

and variance σ2
i = µi.

(

1 +
µi

ri

)

. Thus, we show (Buishand [4]) that the sequence

of persistences
(

qi
n : n ≥ 1

)

of the state i (i = 0, 1), is monotonously increasing

(resp. monotonously decreasing) with limit
µi

µi + ri
if ri < 1 (resp. ri > 1), and

is constant in ri = 1 and valued
µi

1 + µi
.

2. The time series (Xt; t ∈ N) is deduced here from a process (Vt; t ∈ R
+)

in continuous time with values in {0, 1}. Let us put:

Xt =







1, if Vs = 1 : s ∈ [t, t + 1[ ,

0, elsewhere,
(4)

for t = 0, 1, 2, . . ..

According to Green [7], we make the hypothesis that (Vt; t ∈ R
+) is a

stationary alternating renewal process in continuous time corresponding to the

sojourn time laws in the states 0 and 1 which are exponential laws of the respective

parameters α0 and α1.

Proposition 3. The binary time series (Xt; t ≥ 0) defined by (4) is

a stationary alternating renewal process with the parameter sojourn time laws
(

p0, p1
)

, where the law p1 is the geometrical law with the parameter 1− e−α1

and

the law p0 is defined by

p0
n = C1λ

n
1 (1 − λ1) + C2λ

n
2 (1 − λ2) ; n ≥ 1,

where

λi =
1

2

{

1 − b + (−1)i−1
√

(1 − b)2 + 4 (b − a)

}

,
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Ci =
(−1)i−1

√

(1 − b)2 + 4 (b − a)

[

1 − b − λi +
b − a

1 − e−α1

]

; i = 1, 2

and

a =
α0e−α1

α0 + α1

(

1 − e−(α0+α1)
)

, b = e−α1
(

1 − e−α0
)

.

P r o o f. We can easily deduce from the hypothesis concerning (Vs; s ∈ R
+)

that (Xt; t ∈ N) is a stationary and alternating renewal process. According to

Green’s results the sequences of persistences in the states 1 and 0 for the process

(Xt; t ∈ N) are respectively constant equal to e−α1

and given by

q0
1 = 1 − b +

b − a

1 − e−α1
, q0

n = 1 − b +
b − a

q0
n−1

, n ≥ 2.(5)

Thus, we can immediately deduce that the sojourn time law in the state 1 is

geometrical with parameter 1− e−α1

. To precisely define the sojourn time law in

the state 0, we observe that

p0
1 = 1 − q0

1 and p0
n = q0

1 . . . q0
n−1

(

1 − q0
n

)

: n ≥ 2,

or again

p0
n = ∆n−1 − ∆n : n ≥ 1(6)

if ∆0 = 1 and ∆n = q0
1 . . . q0

n;n ≥ 1.

Also according to (5), we have






∆0 = 1, ∆1 = 1 − b +
b − a

1 − e−α1
,

∆n = (1 − b) .∆n−1 + (b − a)∆n−2; n ≥ 2.
(7)

The equation (7) is a two term linear recurrence equation, and with con-

stant coefficients. The solution is provided by

∆n = C1λ
n
1 + C2λ

n
2 ; n ≥ 0,

where λ1 and λ2 are the roots of the equation

λ2 − (1 − b)λ − (b − a) = 0

and C1 and C2 are the solutions of the system






C1 + C2 = 1

C1λ1 + C2λ2 = 1 − b +
b − a

1 − e−α1

.
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We shall find for λ1, λ2, C1 and C2 the values already provided in the

Proposition 3. Using the relations (6) we obtain the form announced for the p0

law. �

Remark: Let us note that b > a (when α0 and α1 are positive) and

0 < −λ2 < λ1 < 1. We then deduce that the sequence
(

q0
n;n ≥ 1

)

of the per-

sistences in the state 0 converges to the constant λ1. Moreover and accord-

ing to Hardy and Wright’s results [9], the partial sequences
(

q0
2n;n ≥ 1

)

and
(

q0
2n+1;n ≥ 0

)

are respectively monotonously increasing and monotonously de-

creasing and q0
2n ≤ q0

2n+1, n ≥ 1. Thus, the persistence in state 0 varies about

the limit value λ1.

Corollary 1. We have

p = P (Xt = 1) =
α0e−α1

α0 + α1
e−α1

, t ∈ N.

The mean and the variance of the sojourn time law in state 1 (resp. 0) are

given by: m1 =
1

1 − e−α1
; σ2

1 =
e−α1

(

1 − e−α1
)2 (resp. m0 =

α1 + α0
(

1 − e−α1

)

α0e−α1
(

1 − e−α1
) ;

σ2
0 = C1.

1 + λ1

(1 − λ1)
2 +C2.

1 + λ2

(1 − λ2)
2 −m2

0, where λ1, λ2, C1 and C2 are the constants

given in Proposition 3).

In this case, we can write the function of covariance γ
X

(.) of the process

(Xt; t ∈ N) as:

γ
X

(h) =



















α0α1

(α0 + α1)2
e−(h+2)α1−hα0

, if h > 0

α0e−α1

(α0 + α1)2

(

α0 + α1 − α0e−α1
)

, if h = 0.

2. Statistical study. Let us suppose we observe the trajectory of a

stationary alternating renewal process with sojourn time laws p0 and p1 having

means m0 and m1 and variances σ2
0 and σ2

1 .

Concerning the unbiased estimator
S1

n

n + 1
of p =

m1

m0 + m1
, we have:

Proposition 4. The statistics
S1

n

n + 1
is a weakly consistent estimator of



124 Moussedek Bousseboua and Fouad Lazhar Rahmani

m1

m0 + m1
, and the sequence

{√
n

(

S1
n

n + 1
− m1

m0 + m1

)}

n≥1

converges in distri-

bution to zero-mean gaussian variable with variance σ2 =
m2

1σ
2
0 + m2

0σ
2
1

(m0 + m1)
2 .

P r o o f. We can write

S1
n =

Y 1
n
∑

l=1

∆1
l + ∆n.1{X0=1} + Tn.1{Xn=1},

and as ∆1
l = D1

l+1; (1 ≤ l ≤ q − 1), and Y 1
n = q − 1 if

{X0 = 1} ∩
{

n
∑

t=1

(1 − Xt) .Xt−1 +

n
∑

t=1

Xt (1 − Xt−1) = 2q

}

,

then conditioned on this event we have

S1
n =







D1
1 + . . . + D1

q , if T 0
q ≤ n < T 1

q+1; q = 1, 2, . . .

D1
1 + . . . + D1

q + n − T 1
q+1, if T 1

q+1 ≤ n < T 0
q+1; q = 0, 1 . . .

Let then ε be a positive random variable which, conditioned on X0 = 1,

follows the law pε so that p̂1 ∗pε = p1, and is independent of D1
j+1 and D0

j ; j ≥ 1.

Let us define S̃1
n = S1

n + ε.

According to the central limit theorem (Takács [14], Renyi [13]), the se-

quence

{

√
n

(

S̃1
n

n + 1
− m1

m0 + m1

)}

n≥1

conditioned on X0 = 1, converges in

distribution to zero mean gaussian variable with variance σ2. As
√

n
S̃1

n − S1
n

n + 1
=

√
n

ε

n + 1
converges to 0 almost surely when n → +∞, then the same result is

true for the sequence

{√
n

(

S1
n

n + 1
− m1

m0 + m1

)}

n≥1

. In an analogous manner,

we show that the same tendency occurs conditioned on X0 = 0. Consequently,

the result of the proposition is demonstrated. �

Buishand has precised the asymptotic behavior of the variance σ2 of S1
n

when the moments of order 3 of the sojourn time laws exist. We have

var
(

S1
n

)

= (n + 1) .
m2

1σ
2
0 + m2

0σ
2
1

(m0 + m1)
3 +

(

m1σ
2
0 − m0σ

2
1

)2

2 (m0 + m1)
4 − m2

1µ0,3 + m2
0µ1,3

3 (m0 + m1)
3

+
2m1m0 + m2

0m
2
1

6 (m0 + m1)
2 + o (1) ,
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where µi,3 is the centered moment of the order 3 of the law pi; i = 0, 1.

It follows in particular that
S1

n

n+1
converges in mean-square to

m1

m0+m1
.

Estimation of the moments of sojourn time laws. Following this

introductory result, we now propose to estimate the means m0 and m1 of the

sojourn time laws p0 and p1.

Proposition 5. The statistics
S1

n

(n + 1) .θn
(resp.

n + 1 − S1
n

(n + 1) .θn
),

θn ∈
{

N01
n

n
,
N10

n

n
,
Y 1

n

n
,
Y 0

n

n

}

are estimators of m1 (resp. m0). These estimators

are weakly consistent.

P r o o f. We only have to prove that the variable θn is a weakly consistent

estimator of
1

m0 + m1
.

Firstly, it is obvious that the variables
N01

n

n
=

1

n

n
∑

i=1

(1 − Xt−1) .Xt and

N10
n

n
=

1

n

n
∑

i=1

Xt−1. (1 − Xt), are estimators of
1

m0 + m1
, and similarly for the

variables
Y 0

n

n
and

Y 1
n

n
. In addition, these estimators are convergent in probability.

For example, the convergence of the estimator
Y 0

n

n
is a consequence of Takács’s

theorem (Renyi [13]). The conditions of validity for this theorem are found in

the renewal hypothesis, conditioned on X0 = 1 where X0 = 0, this added to the

fact that

T 1
Y 0

n +1 ≤ n < T 1
Y 0

n +2

exception made on the event {X0 = . . . = Xn = 0} (the probability of which tends

to 0). The convergence in probability of the variable Y 1
n can be demonstrated in

the same way and the convergence of the variable N1−i,i
n follows from the fact

that the variable Y i
n − N1−i,i

n is bounded. �

The expression of the likelihood function leads to estimations of the p0

and p1 parameters from the approximate log-likelihood function

Y 0
n
∑

k=1

log
(

p0
∆0

k

)

+

Y 1
n
∑

l=1

log
(

p1
∆1

l

)

which suggests to get back to a problem of two estimations: the estimation of



126 Moussedek Bousseboua and Fouad Lazhar Rahmani

the law parameter p0 and the estimation of the law parameter p1.

Then we consider the problem of sequential estimation of the mean mi and

the variance σ2
i of the sojourn time law pi in the state i : i ∈ {0, 1}. Regarding the

observation to the random instant Y i
n of the set ∆i

1, . . . ,∆
i
k, . . . of the random

variables independent and identically distributed according to the pi law and

taking into account that
Y i

n

n
is an estimator which converges in probability to

1

m0 + m1
, we deduce from the Anscombe’s theorem [2] the following result:

Lemma 2. Let us suppose that pi law admits moments of order up to 4.

Then the sequences







1
√

Y i
n

Y i
n
∑

k=1

∆i
k−mi

σi







n≥1

and







1
√

Y i
n

Y i
n
∑

k=1

(

∆i
k

)2 −E
(

∆i
1

)2

√

var
(

∆i
1

)2







n≥1
converge in distribution to a normal random variable which is centered and re-

duced.

Then we have:

Corollary 2. If the law pi admits moments of order up to 4, the esti-

mators mi,n =
1

√

Y i
n

Y i
n
∑

k=1

∆i
k and σ2

i,n =
1

√

Y i
n

Y i
n
∑

k=1

(

∆i
k − mi,n

)2
of mi and σ2

i are

weakly consistent, and the sequence {√n (mn − m) ;n ≥ 1} converges in distri-

bution to a gaussian random variable which is centered and having as variance

σ2
i . (m0 + m1).

P r o o f. The results of convergence in probability of
Y i

n

n
and S1

n assure

the convergence in probability of
1

Y i
n

Y i
n
∑

k=1

∆i
k to mi and

1

Y i
n

Y i
n
∑

k=1

(

∆i
k

)2
to

E
(

∆i
1

)2
= m2

i + σ2
i . Then

1

Y i
n

Y i
n
∑

k=1

(

∆i
k − mi,n

)2
converges to σ2. As

√

n

Y i
n

con-

verges in probability to
√

m0 + m1, we obtain the convergence in distribution of

the sequence {√n (mn − m) ;n ≥ 1}. �

Examples

1. If the sojourn time laws pi; i ∈ {0, 1} are translated negative binomial

laws with parameters
(

µi, ri
)

, then this law has as mean mi + 1 and as variance

σ2
i = µi.

(

µi

ri
+ 1

)

, i ∈ {0, 1}. The results concerning the estimators of p =



Models of alternating renewal process at discrete time 127

µi + 1

µ0 + µ1 + 2
, mi, σ2

i , i ∈ {0, 1}, are applied here again; it is easy to notice that

the conditions validating these results are satisfied.

Now let us figure the estimation problem with the parameters
(

µi, ri
)

,

i = 0, 1. We shall get back once more to an estimation problem consisting in

the estimation of the parameters
(

µ0, r0
)

of the p0 law and the estimation of the

parameters
(

µ1, r1
)

of the p1 law. For ease of presentation, the index i identifying

the law, its parameters and the corresponding observations will be omitted in the

following.

The log-likelihood function which corresponds to the observation

(δ1, . . . , δn) of an independent sample (∆1, . . . ,∆n) of a translated negative bi-

nomial law with the parameter (µ, r) is:

l (δ1, . . . , δn;µ, r) = −
+∞
∑

j=1

nj.r. log
(

1 +
µ

r

)

+
+∞
∑

j=1

nj. (j − 1) . log

(

µ

µ + r

)

+

+∞
∑

j=3

nj. {log (r) + log (r + 1) + . . . + log (r + j − 2) − log ((j − 2)!)} ,

where nj is the number of δk : 1 ≤ k ≤ n, equal to j and n =
+∞
∑

j=1
nj.

To estimate µ and r by the maximum likelihood method, we look then

for (µ, r) solution of




































−
+∞
∑

j=1

nj



 .
r

µ + r
+

+∞
∑

j=1

nj. (j − 1) .
r

µ (µ + r)
= 0

−
+∞
∑

j=1

nj .

[

log
(

1 +
µ

r

)

− µ

µ + r
+

j − 1

µ + r

]

+

+∞
∑

j=3

nj.

j−2
∑

l=0

1

r + l
= 0.

The first equation will then give

µ̂ =
1

n

+∞
∑

j=1

j.nj − 1 =
1

n

+∞
∑

j=1

j.δj − 1

and for µ = µ̂, the likelihood maximum estimator r̂ of r is the solution of the
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equation

n. log
(

1 +
µ

r

)

=
+∞
∑

j=3

nj.

(

1

r
+

1

r + 1
+ . . . +

1

r + j − 2

)

.

This equation has a single root if s2
n > δn (Anscombe [1] for the existence, and

Bonitzer [3] for the uniqueness), where δn, s2
n designate respectively the empirical

mean and the variance of (δ1, . . . , δn).

However, we have to use frequently iterative methods to calculate r̂. Also, in

order to suggest explicit estimators of (µ, r), we use the moments’ method which

provides:

µ̂n =
1

n

n
∑

j=1

∆j − 1 = ∆n − 1, r̂n =
µ̂2

n

S2
n − µ̂n

,

with S2
n = 1

n

∑n
j=1 (∆j − (µ̂ + 1))2.

We immediatly deduce from Corollary 2 the following result:

Corollary 3. The estimators µi,n and ri,n of µi and ri respectively (i ∈
{0, 1}), are convergent in probability, and the sequence

{√
n
(

µi,n − µi

)

;n ≥ 1
}

converges in distribution to a centered gaussian random variable having variance

µi (µ0 + µ1 + 2) .

(

1 +
µi

ri

)

; i ∈ {0, 1}.

2. Estimation of some characteristics of the model (4). The results con-

cerning the estimators of p =
α0.e−α1

α0 + α1
, mi, σ

2
i ; i ∈ {0, 1} are again applicable

here.

We now consider the estimation problem with the parameters α0 and α1.

The expressions of m1 and m2 depending of α0 and α1 lead to the estimators

α1
n = − log

(

1 − 1

m1,n

)

and α0
n =

α1
n.m1,n

m0,n.e−α1
n − 1

of α1 and α0 respectively, where mi,n =
1

Y i
n

Y i
n
∑

k=1

∆i
k; i ∈ {0, 1}.

We immediatly deduce from corollary 1 the following result:

Corollary 4. The estimators α1
n and α0

n of α0 and α1 are convergent

in probability.

We can build the estimation of α0 and α1 from the estimation of the
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transition probabilities

p
11

= P (Xt = 1/X0 = 1) and p
01

= P (Xt = 1/X0 = 0) ,

which are respectively given by

p
11

= e−α1

and p
01

=
α0.e−α1

(

1 − e−α1

)

α1 + α0
(

1 − e−α1
) .

The estimators of p
11

and p
01

are given by:

p̂(n)
11

=
N

11

n

N 01

n + N 11

n

=
Un

S1
n − xn

; p̂(n)
01

=
N

01

n

N 00

n + N 01

n

=
S1

n − Un − x0

n − S1
n + xn

;

where Un =
∑n

t=1 Xt.Xt−1, are the estimators for the maximum of approximate

likelihood in the case of first order markov chains. Here, of course the process

is not markovian but, taking into account that the p1 law is geometrical (let us

recall 0 < −λ2 < λ1 < 1), it seems reasonable to use these estimators. We are

thus led to the estimators

α̂1
n = − log p̂n

11
and α̂0

n = − p̂(n)
01

. log p̂(n)
11

(

p̂n
11
− p̂n

01

)

(

1 − p̂
(n)
11

) ;

for α0 and α1.

It follows immediately the result below:

Corollary 5. The estimators α̂1
n and α̂0

n of α0 and α1 are convergent

in probability.

Acknowledgements. The authors would like to thank the referees for

their suggestions and comments. We would also like to thank the colleagues of

the Section of Probability and Statistics of the Institute of Mathematics and

Informatics for their cooperation in preparing the final version of this paper.

REF ERENC ES

[1] F. J. Anscombe. Sampling theory of the negative binomial and logarithmic
series distributions. Biometrika (1950), 358–382.

[2] F. J. Anscombe. Large sample theory of sequential estimation. Proc. Cam-
bridge Phil. Soc. 48 (1952), 600.



130 Moussedek Bousseboua and Fouad Lazhar Rahmani
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