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Abstract. We study the subgroup structure, Hecke algebras, quasi-regular
representations, and asymptotic properties of some fractal groups of branch
type.

We introduce parabolic subgroups, show that they are weakly maximal,
and that the corresponding quasi-regular representations are irreducible.
These (infinite-dimensional) representations are approximated by finite-di-
mensional quasi-regular representations. The Hecke algebras associated to
these parabolic subgroups are commutative, so the decomposition in irre-
ducible components of the finite quasi-regular representations is given by
the double cosets of the parabolic subgroup. Since our results derive from
considerations on finite-index subgroups, they also hold for the profinite
completions Ĝ of the groups G.

The representations involved have interesting spectral properties inves-
tigated in [6]. This paper serves as a group-theoretic counterpart to the
studies in the mentioned paper.

We study more carefully a few examples of fractal groups, and in doing
so exhibit the first example of a torsion-free branch just-infinite group.

We also produce a new example of branch just-infinite group of interme-
diate growth, and provide for it an L-type presentation by generators and
relators.
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1. Introduction. Fractal groups entered recently in the avant-scène
of group theory, and are related to diverse areas such as the theory of branch
groups [20], automata groups [6] and so on.

Fractal groups of branch type have many interesting properties. Namely,
the first examples of groups of intermediate growth were found in this class of
groups [18]; the simplest examples of infinite finitely-generated torsion groups
too [16, 22] (thus contributing to the general Burnside problem); fractal groups
provide sporadic examples of groups of finite width with unusual associated Lie
algebra [5], thus answering a question by Efim Zel’manov; etc.

It is therefore of utmost interest to pursue the study of the algebraic, geo-
metric and analytic properties of these groups, and in particular their subgroup
structure.

Fractal groups and branch groups are defined in the category of profinite
groups as well. These new classes of profinite groups already started to play an
important role. For instance, they gave an answer to a question of Efim Zel’manov
about groups of finite width [5], they were used by Dan Segal [31] to solve in the
negative a conjecture by Alex Lubotzky, Laci Pyber and Aner Shalev [25] about a
gap in the range of subgroup growths, these groups have an universal embedding
property [21], and it is believed that branch groups may play an important role
in Galois theory [10].

Fractal groups are groups acting on regular rooted trees and have self-
similarity properties inspired by those of the tree they act on. Branch groups
are groups acting on regular (or, more generally, spherically homogeneous [20])
rooted trees, and having a branch structure that endows them with properties
similar to those of the full tree automorphism group.

The action of a fractal group G extends to an action on the boundary
of the tree. A parabolic subgroup P of G is the stabilizer of an element in the
boundary of the tree — or, equivalently, the stabilizer of an infinite geodesic Al
path starting at the root vertex. Parabolic subgroups can be defined for any group
acting on a tree, but in the case of branch groups they have the remarkable weak
maximality property, and the quotient spaces G/P typically have polynomial
growth, usually of non-integer degree.

Viewing P as the stabilizer of an infinite path e = (e1, e2, . . .), it is ap-
proximated by the stabilizers Pn of finite paths (e1, . . . , en), in the sense that
P =

⋂
Pn. The homogeneous space G/P is then also approximated by the finite

spaces G/Pn. These finite spaces have a limit in the Gromov sense, which is a
compact finite-dimensional space; in case its Hausdorff dimension is not an inte-
ger, we obtain a fractal set of a new nature, as we observed in [6]. The study of
such spaces is promising.

The present paper contains several new results concerning properties of
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branch fractal groups, in particular a part of their subgroup lattice and the struc-
ture of their parabolic subgroups.

One of the main fruits of this research is the first example of torsion-free
branch just-infinite group (see Section 7). This paper also serves as a companion
to [6], in that it studies the structure of parabolic subgroups P of fractal groups,
and the decomposition of the associated quasi-regular representations ρG/P .

These representations are irreducible, and that there are uncountably
many different (pairwise non-equivalent) among them. They are infinite-dimen-
sional, but are approximated by finite-dimensional representations ρG/Pn

where
{Pn} is a sequence of subgroups of finite index such that P =

⋂
n∈N

Pn. For these
finite-dimensional representations we describe a decomposition in irreducible com-
ponents. This decomposition is obtained by a complete description of the struc-
ture of the Hecke algebra associated to the pair (G,P ). These Hecke algebra turn
out to be abelian.

We believe branch fractal groups have good “analytical properties” in the
sense that a sufficiently rich representation theory for these groups, their finite
images, and the corresponding profinite completions can be developed in order
to answer the main questions about harmonic analysis on these groups — their
spectrum, the structure of various completions of their group algebra etc.

The set {ρG/P |P is a parabolic subgroup of G} is probably sufficiently
large for this purpose, since parabolic subgroups have the property that

⋂
g∈G P g =

1 (for the finite-dimensional analogue, this implies that the regular representation
ρGn is a subrepresentation of the tensor product

⊗
|σ|=n ρG/ StabG(σ).)

We are following the first steps along this direction in the present paper.
The results given further are already used for the computation of spectra related
to fractal groups [6], where we show that in some cases these spectra are simple
transformations of Julia sets of quadratic maps of the complex plane.

The paper is organized as follows: in Section 2 we give general definitions
concerning groups acting on rooted trees, introduce the congruence property,
parabolic subgroups, portraits of elements an Hausdorff dimension of closed sub-
groups of Aut(T ).

In Section 3 we recall the definition of branch group, weakly branch group
and regular branch group. We prove the weak maximality of parabolic subgroups
and provide a criterion evaluating the congruence property for regular branch
groups.

In Sections 4, 5, 6, 7, 8 we define groups G, G̃, Γ, Γ, Γ, and study some
properties of these groups. We prove that Γ and Γ are virtually torsion-free,

in contrast to G and Γ which are torsion, and G̃ which is neither torsion nor
virtually torsion-free.

We prove that G̃ is (like G [18] and Γ, Γ and Γ [3]) of intermediate growth,
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and produce a presentation of G̃ which is of L-type, that is, which involves finitely
many relators, along with their iterates under a word substitution. An analogous
representation for G was found by Igor Lysionok [26].

For each of the involved groups we draw a part of their subgroup lattice,
and provide a tree-like decomposition of their parabolic subgroup.

We prove that G, G̃, Γ and Γ are just-infinite branch groups, while Γ is
a just-nonsolvable weakly branch group (the first example of such a group was
given in [11]).

Finally in Section 9 we study, for a branch group G, the quasi-regular
representations corresponding to parabolic subgroups P and stabilizers Pn of
vertices at level n. We show that the quasi-regular representations ρG/P are
irreducible, and for the finite-dimensional representations ρG/Pn

we describe their
decomposition in irreducible components, which we explicit in the case of our
examples. The Hecke algebra L(G,Pn), which controls the decomposition of
ρG/Pn

in irreducible components, is abelian. As a consequence, the orbit structure
of Pn on the homogeneous G-space G/Pn is closely related to that decomposition.

Note that all these results — structure of the parabolic subgroup, lattice
of finite-index subgroups, weak maximality of P , abelian Hecke algebra — hold
also for the closures G of the groups we consider in AutT , which are branch
fractal profinite groups. For instance the statements about the structure of par-
abolic subgroups are valid for them as well if one replaces the restricted tree-like
decomposition by an unrestricted one. Also, in our situation, a group and its
closure have the same sequences of (finite) Hecke algebras so one can consider
these algebras as associated to profinite groups as well. Four of our groups sat-
isfy the congruence property, so their closures are isomorphic to their profinite
completions.

It will be important in the future to develop the theory of representations
of profinite branch groups. The results of Section 9 are a first step in this di-
rection. As we obtained a simple description of the double coset decomposition
with respect to a parabolic subgroup there is a hope that the classical methods
(described for instance in [13]) as well as more recent developments [28] will lead
to a complete theory of the representations of the considered groups as well as of
other groups of this type.

The results in this paper are used in [6], and are announced in the two
notes [8, 7].

1.1. Notation. The following conventional notations shall be used: for
g, h in a group G,

gh = hgh−1, [g, h] = ghg−1h−1;

for elements or subsets g1, . . . , gn in G, the subgroup they generate is written
〈g1, . . . , gn〉 and its normal closure 〈g1, . . . , gn〉G.
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The symmetric subgroup on a set Σ is written SΣ.
We also introduce a notation for ‘subsemidirect products’, as follows:

Definition 1.1. Let A and B be two subgroups of a group G, with A ∩
B = C, and assume that B is in the normalizer NG(A) and thus acts on A by
conjugation. We write A ⋊C B for the subgroup of G generated by A and B, and
call it the subsemidirect product of A and B.

If for some prime p we have C = 〈Bp, B′〉, then we write A ⋊p−ab B
for the subsemidirect product of A and B, and call it the elementary abelian
subsemidirect product of A and B.

The motivation for this name is that A ⋊C B is naturally a subgroup of
the semidirect product A ⋊ B. Note, however, that A ⋊C B is in general not a
split extension.

In particular, the elementary abelian subsemidirect product is an exten-
sion of A by the elementary abelian p-group B/〈Bp, B′〉, that is in general not
split.

2. Groups acting on rooted trees. The groups we shall consider
will all be subgroups of the group Aut(T ) of automorphisms of a regular rooted
tree T . Let Σ be a finite alphabet. The vertex set of the tree TΣ is the set of
finite sequences over Σ; two sequences are connected by an edge when one can be
obtained from the other by right-adjunction of a letter in Σ. The top node is the
empty sequence ∅, and the children of σ are all the σs, for s ∈ Σ. We shall also
consider the boundary ∂TΣ of TΣ consisting of the semi-infinite sequences over
Σ. In most cases we shall write T for the rooted tree involved, when there is no
ambiguity on Σ.

We suppose Σ = Z/dZ, with the operation s = s + 1 mod d. Let a,
called the rooted automorphism of TΣ, be the automorphism of TΣ defined by
a(sσ) = sσ: it acts nontrivially on the first symbol only, and geometrically is
realized as a cyclic permutation of the d subtrees just below the root.

PPPPPPPPPPP
�

�
�

�

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�����������
@

@
@
@

Fix some Σ, and consider any subgroup G < Aut(T ). Let StabG(σ), the vertex
stabilizer of σ, denote the subgroup of G consisting of the automorphisms that
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fix the sequence σ, and let StabG(n), the level stabilizer, denote the subgroup of
G consisting of the automorphisms that fix all sequences of length n:

Stab
G

(σ) = {g ∈ G| gσ = σ}, Stab
G

(n) =
⋂

σ∈Σn

Stab
G

(σ).

The StabG(n) are normal subgroups of finite index of G; in particular StabG(1)
is of index at most d!. Let Gn be the quotient G/StabG(n). If g ∈ Aut(T ) is
an automorphism fixing the sequence σ, we denote by g|σ the element of Aut(T )
corresponding to the restriction to sequences starting by σ:

σg|σ(τ) = g(στ).

As the subtree starting from any vertex is isomorphic to the initial tree TΣ, we
obtain this way a map

φ :

{
Stab
Aut(T )

(1) → Aut(T )Σ

h 7→ (h|0, . . . , h|d−1)
(1)

which is an embedding. For a sequence σ and an automorphism g ∈ Aut(T ), we
denote by gσ the element of Aut(T ) acting as g on the sequences starting by σ,
and trivially on the others:

gσ(στ) = σg(τ), gσ(τ) = τ if τ doesn’t start by σ.

The rigid stabilizer of σ is RistG(σ) = {gσ | g ∈ G} ∩ G. We also set

Rist
G

(n) = 〈Rist
G

(σ)|σ ∈ Σn〉 =
∏

|σ|=n

Rist
G

(σ)

and call it the rigid level stabilizer (
∏

denotes direct product). We say G has
infinite rigid stabilizers if all the RistG(σ) are infinite.

Definition 2.1. A subgroup G < Aut(T ) is spherically transitive if the
action of G on Σn is transitive for all n ∈ N.

G is fractal if for every vertex σ of TΣ one has StabG(σ)|σ ∼= G, where
the isomorphism is given by identification of TΣ with its subtree rooted at σ.

G has the congruence property if every finite-index subgroup of G contains
StabG(n) for some n large enough.

Lemma 2.2. The group G < Aut(T ) is fractal if and only if φ|StabG(1) :

StabG(1) → Aut(T )Σ is a subdirect embedding into G × . . . × G, i.e. if it is an
embedding that is surjective on each factor.
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P r o o f. If piφ|G 6= G for some projection pi on the vertex i, then
StabG(i)|i 6= G so G is not fractal. We now suppose φ|G is a subdirect embedding
and prove by induction that StabG(σ)|σ ∼= G for all σ.

The induction basis, for |σ| = 1, is equivalent to the hypothesis. Now

by induction G → GΣn−1
is a subdirect embedding, and each factor G maps to

GΣ by φ|G. The composition of two subdirect embeddings is again subdirect, so

G → GΣn
is subdirect. �

For fractal groups, we usually shall write φ instead of φ|G.

Lemma 2.3. A fractal group is spherically transitive if and only if it acts
transitively on the first level Σ.

P r o o f. Assume by induction that G is fractal and transitive on Σn−1,
the induction starting at n = 2. Since φ is subdirect, G is transitive on iΣn−1 for
all i ∈ Σ, and since it is transitive on Σ, it is also transitive on Σn. �

The full automorphism group Aut(T ) has the structure of a profinite
group: it is approximated by the finite groups Aut(T )n = Aut(T )/Stab(n), and
we have

Aut(T ) = lim
←−

n→∞
Aut(T )n.

More on the topology of Aut(T ) is said in [6]. The following lemma follows
directly from the definition of a profinite completion:

Lemma 2.4. Let G < Aut(T ) have the congruence property. Then its

profinite completion Ĝ is isomorphic (as a profinite group) to its closure G in
Aut(T ). If moreover G is contained in a Sylow pro-p-subgroup Autp(T ), then G

is isomorphic to the pro-p completion Ĝp of G.

P r o o f. By the congruence property, {StabG(n)} is a basis of neighbour-

hoods of the identity in Ĝ. �

Definition 2.5. Assume G < Aut(T ) is given, with a subset S ⊂ G. The
portrait of g ∈ G with respect to S is a subtree of T , with inner vertices labeled
by SΣ and leaf vertices labeled by S ∪ {1}. It is defined recursively as follows: if
g ∈ S ∪ {1}, the portrait of g is the subtree reduced to the root vertex, labeled by
g itself. Otherwise, let α ∈ SΣ be the permutation of the top branches of T such
that gα−1 ∈ StabG(1); let (g0, . . . , gd−1) = φ(gα−1) and let Ti be the portrait of
gi. Then the portrait of g is the subtree of T with α labeling the root vertex and
subtrees T0, . . . ,Td−1 connected to the root.

The portrait of g ∈ G is its portrait with respect to ∅. The element g is
called finitary if its portrait is finite.
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The depth of g ∈ G is the height (length of a maximal path starting at
the root vertex) ∂(g) ∈ N ∪ {∞} of the portrait of g.

We now suppose d = p is prime, and consider Aut∗(T ), the Sylow pro-
p subgroup of Aut(T ) consisting of all elements g whose portrait is labeled by
powers of the cycle (0, 1, . . . , d − 1). It has the structure of an infinitely iterated
wreath product

Aut∗(T ) = Z/pZ ≀ Z/pZ ≀ . . . .
For a closed subgroup G of Aut∗(T ), its Hausdorff dimension dim∗(G) is defined
in [1] as

dim∗(G) = lim inf
n→∞

p − 1

pn
logp |Gn| = lim inf

n→∞

logp |Gn|
logp |Aut∗(T )n|

.

In particular, the Hausdorff dimension of Aut∗(T ) is 1, and dim∗ is invariant upon
taking finite-index subgroups.

3. Branch groups. We consider now a special class of groups acting on
rooted trees. We shall always implicitly assume they act spherically transitively.

Definition 3.1.

(1) G is a regular branch group if it has a finite-index normal subgroup K <
StabG(1) such that

KΣ < φ(K).

It is then said to be regular branch over K.

(2) A subgroup G < Aut(T ) is a branch group if for every n ≥ 1 the subgroup
RistG(n) has finite index in G.

(3) G is a weakly branch group if all of its rigid stabilizers RistG(σ) are non-
trivial.

Note that the definition of a branch group admits an even more general
setting — see [20]. Four of our examples will be regular branch groups, and the
last one will not be a branch, but rather a weakly branch group. The following
lemma shows that, for fractal groups, implies implies in Definition 3.1.

Lemma 3.2. If G is a fractal, regular branch group, then it is a branch
group. If G is a branch group, then it is a weakly branch group.

P r o o f. Assume G is a regular branch group over its subgroup K. Clearly
KΣn

can be viewed, through φn, as a subgroup of RistG(n), and is of finite index
in GΣn

, so RistG(n) is of finite index in G. The second implication holds because
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branch groups are infinite, and ‘finite index in an infinite group’ is stronger than
‘non-trivial’. �

Note also that if all rigid stabilizers are non-trivial, then they are all
infinite; moreover,

Lemma 3.3. Let G be a weakly branch group, σ ∈ Σn a vertex, and
σ = σ1 . . . σnσn+1 . . . ∈ ΣN an infinite ray extending σ. Then the RistG(σ)-orbit
of σ is infinite.

P r o o f. It suffices to show that the orbit of vk = σ1 . . . σn+k becomes
arbitrarily large as k increases. Since RistG(σ) is non-trivial, it contains g moving
στ to στ ′ for some τ, τ ′ ∈ Σk. Since G is spherically transitive, it contains h
moving vk to στ . Consider now gh: it belongs to RistG(σ), and does not fix vk,
whence vk’s orbit contains at least 2 points.

The argument applied to vk shows that some vk+k′ has at least 2 points
in its StabG(vk)-orbit, so at least 4 points in its StabG(σ)-orbit; and this process
can be repeated an arbitrary number of times to produce vertices vk+...+k(j) with

at least 2j+1 points in their orbit. �

If G is a regular branch group over its subgroup K, the following no-
tations are also introduced: given a subgroup L of K, we write L(0) = L and

inductively L(n) = φ−1(LΣ
(n−1)). These L(i) form a sequence of subgroups of L

with
⋂

n≥0 L(n) = {1}.
Definition 3.4. A group G is just-infinite if it is infinite, and for any

non-trivial normal subgroup N the quotient G/N is finite.

Note that in checking just-infiniteness one may restrict one’s attention to
subgroups N = 〈g〉G, i.e. normal closures of a non-trivial element of G. We will
use the following criterion:

Proposition 3.5. Let G be regular branch over K. Then G is just
infinite if and only if |K : K ′| < ∞.

P r o o f. Clearly if K ′ is of infinite index in K then 〈K ′〉G is of infinite
index in G, and is not trivial (K clearly cannot be abelian) so G is not just
infinite.

Conversely, assume |K : K ′| < ∞ and let G ∋ g 6= 1. Let N = 〈g〉G;
we will show that N is of finite index. Determine n such that g ∈
StabAut(T )(n− 1)\StabAut(T )(n). Then there is a sequence σ of length n− 1 such
that g|σ 6∈ StabAut(T )(1). Choose now two elements k1, k2 of K. Because G is

branched on K, it contains for i = 1, 2 the elements ξi = kσ0
i . Let η = [ξ1, g] ∈ N .

It fixes all sequences except: those starting by σ0, upon which it acts as k1, and
possibly those starting by σx for x ≥ 1. Consider ζ = [η, ξ2] ∈ N . Clearly
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ζ = [k0, k1]
σ0; as the commutator [k0, k1] was chosen arbitrarily, it follows that

N contains K ′σ0; and as N is normal, it contains K ′ × . . . × K ′, the product
having dn factors. Now K ′ is of finite index in K which is of finite index in G,
so K ′ × . . . × K ′ is of finite index in G and the same holds for N . �

Definition 3.6. A group G is just-non-solvable if it is not solvable, but
all its non-trivial quotients are solvable.

Proposition 3.7. Let G be regular branch over K. Then G is just-
non-solvable if and only if G/K(1) is solvable. In particular, if d is prime, every
regular branch subgroup of Aut∗(T ) is just-non-solvable.

P r o o f. Let G be just-non-solvable. Then K(1) is a non-trivial normal
subgroup, so G/K(1) is solvable.

Let now N be a non-trivial normal subgroup of G. It is shown in [20,
Theorem 4] that N contains K ′(n) for some n ∈ N, so it suffices to show that all

G/K ′(n) are solvable. Consider the chain

G/K ′(n) ⊲ K/K ′(n) ⊲ . . . ⊲ K(n)/K
′
(n)

∼= K/K ′ × . . . × K/K ′.

The last group is abelian, hence solvable ; successive quotients in the sequence
are also solvable because

(K(i)/K
′
(n))/(K(i+1)/K

′
(n)) = K(i)/K(i+1)

∼= K/K(1) × . . . × K/K(1),

and K/K(1) is solvable by assumption. Also, (G/K ′(n))/(K/K ′(n))
∼= G/K is

solvable; therefore G/K ′(n) is an extension of solvable groups, so is solvable.

In case d is prime and G is a branch subgroup of Aut∗(T ), the quotient
G/K(1) is a finite d-group, so is solvable. �

The following criterion describes which branch groups enjoy the congru-
ence property:

Proposition 3.8. Let G be regular branch over K. Then G has the
congruence property if K ′ contains StabG(m) for some m ∈ N.

P r o o f. Let N be a finite-index subgroup of G. By replacing N with its
core

⋂
g∈G Ng, still of finite index, we may suppose N is normal in G. By [20,

Theorem 4], N contains K ′(n) for some n ∈ N, so

N > K ′(n) > Stab
G

(m)(n) > Stab
G

(m + n). �

As an example of regular branch group not enjoying the congruence
property, consider G = Autf (T ), the automorphisms of T whose action φv ∈ SΣ
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is non-trivial only at finitely many vertices v, and its subgroup
H = {g ∈ G| ∏v∈Σ∗ φv ∈ AΣ}, where AΣ is the alternate subgroup of SΣ. Here
G is regular branch, with K = G, but H does not contain any level stabilizer.

When furthermore G is finitely generated, the following ‘quantitative con-
gruence property’ shall be useful to prove equalities among subgroups:

Proposition 3.9 (Quantitative Congruence Property). Let G be regular
branch over K, finitely generated by the set S and with the congruence property.
Let n be minimal such that 〈s〉G ≥ StabG(n) for all generators s ∈ S. Let m be
minimal such that K ′ contains StabG(m).

Let N be any non-trivial normal subgroup of G and 1 6= g ∈ N . Then N
contains StabG(∂(g) + m + n).

P r o o f. This follows again from Theorem 4 in [20]. �

3.1. Parabolic subgroups. In the context of groups acting on the
hyperbolic space, a parabolic subgroup is the stabilizer of a point on the boundary.
We give here a few general facts concerning parabolic subgroups of fractal or
branched groups, and recall some results on growth of groups and sets on which
they act.

Definition 3.10. Let T = Σ∗ be a rooted tree. A ray e in T is an infinite
geodesic starting at the root of T , or equivalently an element of ∂T = ΣN.

Let G < Aut(T ) be any subgroup and e be a ray. The associated parabolic
subgroup is Pe = StabG(e).

The following important facts are easy to prove:

• ⋂e∈∂T Pe =
⋂

g∈G P g = 1.

• Let e be an infinite ray and define the subgroups Pn = StabG(e1 . . . en).
Then the Pn have index dn in G (since G acts transitively) and satisfy

Pe =
⋂

n∈N

Pn.

• P has infinite index in G, and has the same image as Pn in the quotient
Gn = G/StabG(n).

Definition 3.11. Let G be a group generated by a finite set S, let X be
a set upon which G acts transitively, and choose x ∈ X. The growth of X is the
function γ : N → N defined by

γ(n) = |{gx ∈ X| |g| ≤ n}|,
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where |g| denotes the minimal length of g when written as a word over S. By the
growth of G we mean the growth of the action of G on itself by left-multiplication.

Given two functions f, g : N → N, we write f � g if there is a constant
C ∈ N such that f(n) < Cg(Cn + C) + C for all n ∈ N, and f ∼ g if f � g and
g � f . The equivalence class of the growth of X is independent of the choice of
S and of x.

X is of polynomial growth if γ(n) � nd for some d. It is of exponential
growth if γ(n) � en. It is of intermediate growth in the remaining cases. This
trichotomy does not depend on the choice of x or S.

Definition 3.12. Two infinite sequences σ, τ : N → Σ are confinal if
there is an N ∈ N such that σn = τn for all n ≥ N .

Confinality is an equivalence relation, and equivalence classes are called
confinality classes.

The following result is due to Volodymyr Nekrashevych and Vitaly Sush-
chansky.

Proposition 3.13. Let G be a group acting on a regular rooted tree T ,
and assume that for any generator g ∈ G and infinite sequence σ, the sequences
σ and gσ differ only in finitely many places. Then the confinality classes of the
action of G on ∂T are unions of orbits. If moreover StabG(σ) contains the rooted
automorphism a for all σ ∈ T , the orbits of the action are confinality classes.

The proof of the following result appears in [6].

Proposition 3.14. Let G < Aut(T ) satisfy the conditions of Proposi-
tion 3.13, and suppose that for the map φ : g 7→ (g1, . . . , gd) defined in (1) there
are constants λ, µ such that |gi| ≤ λ|g|+µ for all i. Let P be a parabolic subgroup.
Then G/P , as a G-set, is of polynomial growth of degree at most log1/λ(d). If
moreover G is spherically transitive, then G/P ’s asymptotical growth is polyno-
mial of degree log1/λ′(d), with λ′ the infimum of the λ as above.

Definition 3.15. Let G be a branch group, and H any subgroup. We
say H is weakly maximal if H is of infinite index in G, but all subgroups of G
strictly containing H are of finite index in G.

Note that every infinite finitely generated group admits maximal sub-
groups, by Zorn’s lemma.

Note also that some branch groups may not contain any infinite-index
maximal subgroup; this is the case for G, as was shown by Ekaterina Pervova.

Proposition 3.16. Let P be a parabolic subgroup of a regular branch
group G. Then P is weakly maximal.
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P r o o f. Assume G is regular branch over K, and P = StabG(e). Recall
that G contains a product of dn copies of K at level n, and clearly P contains a
product of dn − 1 copies of K at level n, namely all but the one indexed by the
vertex e1 . . . en.

Take g ∈ G \ P . There is then an n ∈ N such that g(en) 6= en, so 〈P,P g〉
contains the product of dn copies of K at level n, hence is of finite index in G. �

4. The group G. We give here the basic facts we will use about the
first of Grigorchuk’s examples, the group G [16, 24]. We apply the discussion of
the previous section to Σ = {0, 1}. Recall a is the automorphism permuting the
top two branches of T2. Define recursively by b the automorphism acting as a
on the right branch and c on the left, by c the automorphism acting as a on the
right branch and d on the left, and by d the automorphism acting as 1 on the
right branch and b on the left. In formulæ,

b(0xσ) = 0xσ, b(1σ) = 1c(σ),
c(0xσ) = 0xσ, c(1σ) = 1d(σ),
d(0xσ) = 0xσ, d(1σ) = 1b(σ).

G is the group generated by {a, b, c, d}. It is readily checked that these generators
are of order 2 and that {1, b, c, d} constitute a Klein group; one of the generators
{b, c, d} can thus be omitted.

We write Hn = StabG(n) and H = H1. Explicitly, the map φ restricts to

φ :






H → G × G
b 7→ (a, c), ba 7→ (c, a)
c 7→ (a, d), ca 7→ (d, a)
d 7→ (1, b), da 7→ (b, 1).

Define also the following subgroups of G:

B = 〈b〉G = 〈b, ba, bda, bada〉,
K = 〈(ab)2〉G = 〈(ab)2, (abad)2, (adab)2〉.

The group G

• is an infinite torsion 2-group.

• is of intermediate growth.

• is amenable.

• is fractal and branched on its subgroup K.

• is just-infinite.
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• is residually finite.

• has an infinite recursive presentation [26] of L-type

G = 〈a, b, c, d| a2, b2, c2, d2, bcd, σi(ad)4, σi(adacac)4 (i ∈ N)〉,

where σ is the substitution on {a, b, c, d}∗ defined by

σ(a) = aca, σ(b) = d, σ(c) = b, σ(d) = c,

which induces an injective expanding endomorphism of G of infinite-index
image. Moreover none of the relators of G are superfluous [19].

• The subgroup B is of index 8 in G and K is of index 16. Also, K contains
StabG(3) and K ′ contains K(2), so G has the congruence property.

• The quotients Gn = G/StabG(n) have order 25·2n−3+2 for n ≥ 3 (and order
22n−1 for n ≤ 3). Therefore the closure G of G in Aut(T ) is isomorphic to

the profinite completion Ĝ and is a pro-2-group. It has Hausdorff dimension
5/8 [20].

Most of these facts are known, and appear in the extensive reference [24]
and in [20]. One can then check by direct computation that K is of index 16. To
prove that G is regular branch, set x = (ab)2. Then one has φ([x, d]) = (x, 1) so
by conjugation φ(K) > K × 1 and thus φ(K) > K × K. By direct computation,
K ′ is of index 64 in K, so G is just-infinite.

For all other computations, we propose an alternate method of proof,
based on the following

Lemma 4.1. G satisfies the Quantitative Congruence Property for m = 4
and n = 3.

P r o o f. This follows from the above description of K. �

Proposition 4.2. We have

φ(H) = (B × B) ⋊ 〈φ(c), φ(ca)〉,
φ(B) = (K × K) ⋊〈φ(ab)8〉 〈φ(b), φ(ba)〉,
φ(K) = (K × K) ⋊〈φ(ab)8〉 〈φ(ab)2〉,

with the notation introduced in Definition 1.1.

P r o o f. Each of these subgroups H,B,K are normal finite-index sub-
groups of G. By the Quantitative Congruence Property, they are all contained
in some StabG(n). It is therefore equivalent to study them directly or to study
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their images in Gn = G/StabG(n), which is a finite group. A computer algebra
system, like [30], can then be used to derive their structure.

4.1. Low-index subgroups. G has 7 subgroups of index 2:

〈b, ac〉, 〈c, ad〉, 〈d, ab〉,
〈b, a, ac〉, 〈c, a, ad〉,〈d, a, ab〉,

H = 〈b, c, ba, ca〉.

As can be computed from its presentation [26] and a computer algebra system [30],
G has the following subgroup count:

Index Subgroups Normal In H Normal

1 1 1 0 0
2 7 7 1 1
4 19 7 9 4
8 61 7 41 7
16 237 5 169 5
32 843 3 609 3

4.2. Normal closures of generators. They are as follows:

A = 〈a〉G = 〈a, ab, ac, ad〉, G/A ∼= Z/2Z × Z/2Z,
B = 〈b〉G = 〈b, ba, bad, bada〉, G/B ∼= D8,
C = 〈c〉G = 〈c, ca, cad, cada〉, G/C ∼= D8,
D = 〈d〉G = 〈d, da, dac, daca〉, G/D ∼= D16.

4.3. Some other subgroups. To complete the picture, we introduce
the following subgroups of G:

K = 〈(ab)2〉G, L = 〈(ac)2〉G, M = 〈(ad)2〉G,

B = 〈B,L〉, C = 〈C,K〉, D = 〈D,K〉,
T = K2 = 〈(ab)4〉G,

T(m) = T × . . . × T︸ ︷︷ ︸
2m

, K(m) = K × . . . × K︸ ︷︷ ︸
2m

, N(m) = T(m−1)K(m).

Theorem 4.3.

• In the Lower Central Series, γ2m+1(G) = N(m) for all m ≥ 1.

• In the Derived Series, K(n) = RistG(2n) for all n ≥ 2 and G(n) = RistG(2n−
3) for all n ≥ 3.
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Fig. 1. The top of the lattice of normal subgroups of G below H . The index of the
inclusions are indicated next to the edges
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• The rigid stabilizers satisfy

Rist
G

(n) =

{
D if n = 1,
K(n) if n ≥ 2.

• The level stabilizers satisfy

Stab
G

(n) =






H if n = 1,
〈D,T 〉 if n = 2,
〈N(2), (ab)4(adabac)2〉 if n = 3,

Stab
G

(3) × . . . × Stab
G

(3)
︸ ︷︷ ︸

2n−3

if n ≥ 4.

• There is for all σ ∈ Σn a surjection ·|σ : StabG(n) ։ G given by projection
on the factor indexed by σ.

The top of the lattice of normal subgroups of G below H is given in Figure 1.

P r o o f. The first three points are proven by Alexander Rozhkov in [29].
To prove the fourth assertion, we apply Lemma 4.1 to determine the structure of
StabG(n) for n ≤ 4, and note that StabG(4) = StabG(3) × StabG(3).

For the last statement, note that s = (ab)4(adabac)2 belongs to StabG(3)),
and that φn(σn−3(s)) = (1, . . . , 1, ba, d, d, ba, a, c, a, c) giving, after conjugation,
any generator of G in any position on any level n. �

4.4. The subgroup P . Let e be the ray 1∞ and let P be the corre-
sponding parabolic subgroup.

Theorem 4.4. P/P ′ is an infinite elementary 2-group generated by the
images of c, d = (1, b) and of all elements of the form (1, . . . , 1, (ac)4) in RistG(n)
for n ∈ N. The following decomposition holds:

P =

(
B ×

(
(K × ((K × . . .) ⋊ 〈(ac)4〉)) ⋊ 〈b, (ac)4〉

))
⋊ 〈c, (ac)4〉,

where each factor (of nesting n) in the decomposition acts on the subtree just
below some en but not containing en+1.

Note that we use the same notation for a subgroup B or K acting on a
subtree, keeping in mind the identification of a subtree with the original tree.
The same convention will hold for Theorems 5.14, 6.7, 7.8, 8.6, and all related
propositions. Note also that φ is omitted when it would make the notations too
heavy.
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Fig. 2. The finite group Gn and its subgroups

P r o o f. Define the following subgroups of Gn:

Bn = 〈b〉Gn ; K(n) = 〈(ab)2〉Gn ;

Qn = Bn ∩ Pn; Rn = K(n) ∩ Pn.

Then the theorem follows from the following proposition. �

Proposition 4.5. These subgroups have the following structure:

Pn = (Bn−1 × Qn−1) ⋊ 〈c, (ac)4〉;
Qn = (Kn−1 × Rn−1) ⋊ 〈b, (ac)4〉;
Rn = (Kn−1 × Rn−1) ⋊ 〈(ac)4〉.

P r o o f. A priori, Pn, as a subgroup of Hn, maps in (Bn−1 × Bn−1) ⋊

〈(a, d), (d, a)〉. Restricting to those pairs that fix en gives the result. Similarly,
Qn, as a subgroup of Bn, maps in (Kn−1 × Kn−1) ⋊ 〈(a, c), (c, a)〉, and Rn, as a
subgroup of Kn, maps in (Kn−1 × Kn−1) ⋊ 〈(ac, ca), (ca, ac)〉. �

The group Gn and its subgroups Hn, Bn,Kn, Pn, Rn, Qn are arranged in
the lattice of Figure 2, with the quotients or the indices are represented next to
the arrows.
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5. The group G̃. We describe another fractal group, acting on the
same tree T2 as G. We denote again by a the automorphism permuting the top
two branches, and recursively by b̃ the automorphism acting as a on the right
branch and c̃ on the left, by c̃ the automorphism acting as 1 on the right branch
and d̃ on the left, and by d̃ the automorphism acting as 1 on the right branch
and b̃ on the left. In formulæ,

b̃(0xσ) = 0xσ, b̃(1σ) = 1c̃(σ),

c̃(0σ) = 0σ, c̃(1σ) = 1d̃(σ),

d̃(0σ) = 0σ, d̃(1σ) = 1b̃(σ).

Then G̃ is the group generated by {a, b̃, c̃, d̃}. Clearly all these generators are of
order 2, and {b̃, c̃, d̃} is elementary abelian of order 8.

We write H̃n = StabG̃(n) and H̃ = H̃1. Explicitly, the map φ restricts to

φ :






H̃ → H̃ × H̃

b̃ 7→ (a, c̃), b̃a 7→ (c̃, a)

c̃ 7→ (1, d̃), c̃a 7→ (d, 1)

d̃ 7→ (1, b̃), d̃a 7→ (b̃, 1).

Proposition 5.1. G̃ contains elements of finite and infinite order.

P r o o f. Consider the element x = ab̃c̃d̃ of G̃. Then x2 ∈ H̃ satisfies
φ(x2) = (x, x), so x2n 6= 1 for all n; as G̃ < Aut(T2) has only 2-torsion, it follows
that x is of infinite order. �

Note that x acts on ∂T2 like an ‘adding machine’ (see [9]). More generally,
every spherically transitive automorphism of Tp is conjugated in Aut(Tp) to a
standard one, called the adding machine, that can be written z 7→ z + 1 after
identification of ∂Tp with Zp.

Proposition 5.2. G̃ contains G as a subgroup of infinite index.

P r o o f. The embedding is given by a 7→ a, b 7→ b̃d̃, c 7→ c̃b̃, d 7→ d̃c̃. The
index is infinite because the subgroups G and 〈ab̃c̃d̃〉 do not intersect, one being
torsion and the other torsion-free. �

Define the elements u = (ab̃)2 and v = (ad̃)2 in G̃, and consider its
following subgroups:

H̃ = 〈b̃, c̃, d̃〉G̃, B̃ = 〈b̃, d̃〉G̃, C̃ = 〈b̃, v〉G̃, K̃ = 〈u, v〉G̃.
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Proposition 5.3. They have the following structure:

H̃ = 〈b̃, c̃, d̃, b̃a, c̃a, d̃a〉 is normal of index 2 in G̃.

B̃ = 〈b̃, d̃, b̃a, d̃a, b̃c̃a, b̃ac̃a〉 is normal of index 8 in G̃.

C̃ = 〈b̃, v, b̃a, b̃c̃a, b̃ac̃a〉 is normal of index 16 in G̃.

K̃ = 〈u, v, (ab̃d̃)2, ua, uac̃〉 is normal of index 32 in G̃.

Furthermore,

φ(H̃) = (B̃ × B̃) ⋊ 〈φ(b̃), φ(b̃a)〉,
φ(B̃) = (C̃ × C̃) ⋊ 〈φ(b̃), φ(b̃a)〉,
φ(C̃) = (K̃ × K̃) ⋊φ〈([b̃,v],[b̃a,v]〉 〈φ(b̃), φ(b̃a), v〉,
φ(K̃) = (K̃ × K̃) ⋊

φ〈[u,v]〉G̃ 〈u, v〉.

Proposition 5.4. G̃ is spherically transitive, fractal and regular branch
over its subgroup K̃.

P r o o f. G̃ is fractal by Lemma 2.2 and the nature of the map φ. As K̃
is normal, φ(K̃) contains φ[u, d̃] = (1, u) and φ[u, c̃] = (1, v), so by conjugation it
contains 1 × K̃ and K̃ × 1, so finally it contains K̃ × K̃. �

Proposition 5.5. G̃ is just-infinite.

P r o o f. By direct computation, [K̃ : K̃ ′] = 64. Apply Proposition 3.5. �

Proposition 5.6. Define the substitution σ̃ on {a, b̃, c̃, d̃}∗ by

σ̃ :

{
a 7→ ab̃a, b̃ 7→ d̃,

c̃ 7→ b̃, d̃ 7→ c̃.

Then G̃ has a recursive presentation of L-type

G̃ =
〈
a, b̃, c̃, d̃

∣∣∣ a2, b̃2, c̃2, d̃2, [b̃, c̃], [b̃, d̃], [c̃, d̃],

σ̃i(ac̃)4, σ̃i(ad̃)4, σ̃i(ac̃ad̃)2, σ̃i(ab̃)8, σ̃i(ab̃ab̃ac̃)4, σ̃i(ab̃ab̃ad̃)4,

σ̃i(ab̃ab̃ac̃ab̃ab̃ad̃)2 (i ≥ 0)
〉
,

(2)

and σ̃ induces an injective expanding endomorphism of G̃ of infinite-index image.

P r o o f. Consider the groups

Γ = 〈α, β, γ, δ|α2 , β2, γ2, δ2, [β, γ], [β, δ], [γ, δ], (αγ)4 〉,
Ξ = 〈β, γ, δ, βα, γα, δα〉 <2 Γ.
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Then G̃ is a quotient of Γ, written G̃ = Γ/Ω, via the map α 7→ a, β 7→ b, γ 7→
c, δ 7→ d, and the map φ lifts to a map θ : Ξ → Γ × Γ. Define

Ωn = {g ∈ Γ| θn is applicable and θn(g) = (1, . . . , 1) (2n copies)},

where the notation implies that g ∈ Ξ, θ(g) ∈ Ξ × Ξ, . . .. For any word w in
{α, β, γ, δ} of length at least 2 representing an element of Ξ, the corresponding
words θ(w)1,2 will be strictly shorter; thus every g ∈ Ω eventually gives 1 through
iterated application of θ, and thus Ω = ∪n≥0Ωn. We will obtain an explicit set
of generators for Ωn: let ω0 = (αγ)4 and

{ω1, . . ., ω6}={(αδ)4, (αγαδ)2, (αβ)8, (αβαβαγ)4, (αβαβαδ)4, (αβαβαγαβαβαδ)2}.

Then we claim that for all n ≥ 0

Ωn = 〈σ̃j+1(ω0), σ̃
j(ωi) (0 ≤ j ≤ n − 1, 1 ≤ i ≤ 6)〉Γ.

By direct application of the Todd-Coxeter algorithm [30], we obtain the
presentation

Ξ =
〈
β, γ, δ, β, γ, δ

∣∣∣β2, γ2, δ2, β
2
, γ2, δ

2
, [β, γ], [β, δ], [γ, δ], [β , γ], [β, δ], [γ, δ], [γ, γ]

〉
.

Computation shows that θ(Ξ) is of index 8 in Γ×Γ. From this we obtain,
again using Todd-Coxeter, the presentation

θ(Ξ) =
〈
β, γ, δ, β, γ, δ

∣∣∣β2, γ2, δ2, β
2
, γ2, δ

2
, [β, γ], [β, δ], [γ, δ], [β , γ], [β, δ], [γ, δ],

[γ, γ], [γ, δ], [δ, γ ], [δ, δ], (ββ)4, (ββxββy)2 (x, y ∈ {γ, δ})
〉
.

As a consequence, we can write ker(θ) as a normal subgroup of Γ by
keeping only those relators of θ(Ξ) that do not appear in Ξ and rewriting them
in {α, β, γ, δ}, namely

Ω1 = ker(θ) = 〈ω1, . . . , ω6〉Γ.

Then a direct computation shows that θσ̃(ωi) = (1, ωi) for i = 0, . . . , 6.
This proves that

Ωn = {g ∈ Ξ| θ(g) ∈ Ωn−1 × Ωn−1}
= ({σ̃(g)| g ∈ Ωn−1} ∪ Ωn−1)

Γ

= 〈σ̃j+1(ω0), σ̃
j(ωi) (0 ≤ j ≤ n − 1, 1 ≤ i ≤ 6)〉Γ. �
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Corollary 5.7. All relations of G̃ have even length. As a consequence,
the Cayley graph of G̃ relative to the generating set {a, b̃, c̃, d̃} is bipartite.

We believe the relations given in the previous theorem are independent,
and that the method used in [19] can be used to prove this.

Note that the relations of G can be obtained from those of G̃; in the
following equalities we indicate by an underscore the letters affected by a relation
in G̃.

(ad)4 = (ac̃d̃)4 =G̃ (ac̃d̃ad̃c̃)2 =G̃ (ac̃d̃ad̃(d̃a)4c̃)(ac̃d̃ad̃c̃)

=G̃ (ac̃ad̃ ad̃ac̃)(ad̃c̃ac̃d̃) =G̃ (d̃ac̃ac̃ad̃a)(ad̃c̃ac̃d̃)

=G̃ d̃(ac̃)4d̃ =G̃ d̃2 =G̃ 1,

and

(adacac)4 = (ad̃c̃ac̃b̃ab̃c̃)4 =G̃ (ad̃ac̃ac̃ab̃ab̃c̃)4 =G̃ c̃a(d̃c̃ab̃ab̃a)(d̃ tildecab̃ab̃a)3ac̃

=G̃ c̃a(d̃(ab̃ab̃ac̃)3(d̃c̃ab̃ab̃a)3)ac̃

=G̃ c̃a(d̃(ab̃ab̃ac̃)(ab̃ab̃ac̃)(ab̃ab̃ad̃ab̃ab̃a)(c̃d̃ab̃ab̃a)(d̃c̃ab̃ab̃a))ac̃

=G̃ c̃a(d̃(ab̃ab̃ac̃)(d̃ab̃ab̃a)2(d̃c̃ab̃ab̃a))ac̃

=G̃ c̃ad̃(ab̃ab̃ac̃ab̃ab̃ad̃)2d̃ac̃ =G̃ 1.

Proposition 5.8. The finite quotients G̃n = G̃/StabG̃(n) of G̃ have

order 213·2n−4+2 for n ≥ 4, and 22n−1 for n ≤ 4.

P r o o f. For n ≥ 4, φ(H̃) is a subgroup of index 8 in G̃ × G̃, so G̃n is
a subgroup of index 8 in G̃n−1 ≀ Z/2 and |G̃n| = |G̃n−1|2/4. For n ≤ 4 one has
G̃n = Aut(T )n = Z/2 ≀ . . . ≀ Z/2. �

Proposition 5.9. K̃ ≥ StabG̃(4) and K̃ ′ ≥ K̃ ′(2), so G̃ has the congruence

property. Additionally, K̃ ′ ≥ StabG̃(5).

P r o o f. The first and third assertions can be checked on a computer.
For the second, K contains y = [u, d] and z = [u, c]; these elements satisfy
φ(y) = (1, u) and φ(z) = (1, v). Then K ′ contains [y, v] = φ−2(1, 1, u, 1) and
[z, d] = φ−2(1, 1, v, 1), so it contains φ−2(1 × 1 × K × 1) and K(2). �

Corollary 5.10. The closure G̃ of G̃ in Aut(T ) is isomorphic to the

profinite completion ̂̃G and is a pro-2-group. It has Hausdorff dimension 13/16.

5.1. The growth of G̃. By the growth of a group one means the growth,
in the sense of Definition 3.11, of the group acting on itself. We rephrase the
definition of growth of a group in a slightly more general frame:
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Definition 5.11. Let G be a group generated by a finite set S, and let
ν : S → R

∗
+ be any function. The weight of g ∈ G is

|g| = min{ν(s1) + . . . + ν(sn)| s1 · · · sn = g, si ∈ S}.
The growth series of G with respect to ν is

Fν(τ) =
∑

g∈G

eτ |g|.

This series converges at least in the half-plane ℜ(τ) < − log(n)/mins∈S ν(s). Let
ρ(ν), the growth rate of G with respect to ν, be the smallest non-positive value
such that the series converges.

Proposition 5.12. If ρ(ν) < 0, then G has exponential growth, while if
ρ(ν) = 0, then G has intermediate or polynomial growth.

P r o o f. Let m and M be the minimum and maximum of the weight func-

tion ν, and set R = lim n

√
γS

G(n). By considering the series FS(τ) =
∑

n≥0 γ(n)τn,

whose radius of convergence is 1/R and comparing it with Fν(τ), we obtain

Mρ(ν) ≤ log(1/R) ≤ mρ(ν),

so R > 1 is equivalent to ρ(ν) < 0. �

The first examples of groups of intermediate growth were constructed
in [17]; the group G is one of them.

Theorem 5.13. G̃ has intermediate growth.

P r o o f. First, note that G̃ cannot have polynomial growth, since it con-
tains G whose growth function is greater than e

√
n [2].

Take as generators for G̃ the set S = {a, b̃, c̃, d̃, b̃c̃, b̃d̃, c̃d̃, b̃c̃d̃}; let θ be
strictly between the real root of the equation −2 + X + X2 + X3 = 0 and 1, for
instance θ = 0.811 and let ν be defined by

ν(a) = 1,

ν(b̃) = (θ + θ3)/(1 − θ3) ≈ 2.87,

ν(c̃) = (−1 + θ + θ2 + θ3)/(1 − θ3) ≈ 2.14,

ν(d̃) = (θ2 + θ3)/(1 − θ3) ≈ 2.54,

ν(b̃c̃) = (−1 + θ + θ3)/(1 − θ3) ≈ 0.73,

ν(b̃d̃) = (θ3)/(1 − θ3) ≈ 1.13,

ν(c̃d̃) = (−1 + θ2 + θ3)/(1 − θ3) ≈ 0.41,

ν(b̃c̃d̃) = (1 + θ3)/(1 − θ3) ≈ 3.28.
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Clearly any element g ∈ G, when expressed as a minimal word in S,
will have the form [a]x1ax2 . . . axn[a], where the first and last a are optional
and xi ∈ S \ {a}. Indeed the function ν satisfies the triangular inequalities
ν(b̃) + ν(c̃) < ν(b̃c̃), etc. Choose once and for all a minimal expression for every
element of G̃.

Suppose now for contradiction that ρ(ν) < 0. For some value η ∈ (0, 1) to
be chosen later, partition G̃ in two sets: A containing those elements g ∈ G whose
minimal expression s1 . . . sn contains at least ηn occurrences of the generator
x = b̃c̃d̃, and B the other elements. Define two generating series

FA(τ) =
∑

g∈A

eτ |g|, FB(τ) =
∑

g∈A

eτ |g|.

Clearly Fν = FA + FB . We will show that for an appropriate value of η both FA

and FB will converge up to some σ with ρ(ν) < σ < 0.
We bound FA by replacing A by a larger set, namely the set of all words

s1 . . . sn containing at least ηn occurrences of x. Then

FA(τ) <
∑

n≥0

(
n

ηn

)(∑

s∈S

eτν(s)

)(1−η)n (
eτν(x)

)ηn
.

By Stirling’s formula,

(
n

ηn

)
≈

√
2πη(1 − η)

√
n

(ηη + (1 − η)1−η)n .

Putting these together, we conclude that FA converges up to any σ > ρ(ν) if

(∑
s∈S eσν(s)

)1−η (
eσν(x)

)η

ηη(1 − η)1−η
< 1,

and this will hold for η large enough, as both the first multiplicand and the
denominator tend to 1 as η tends to 1, while the second multiplicand tends to
eσν(x) < 1.

We then approximate FB by considering the subset B′ ⊂ B of words
s1 . . . sn that either start or end by a, but not both; and further that contain an
even number of as. The series FB′(τ) obtained this way will satisfy FB ≈ 4FB′ .
Now B′ injects in G × G through the map φ, written g 7→ (g|0, g|1). We will
compare |g| with |g|0| + |g|1|. Thanks to the choice of ν, every generator s 6= x
contributing ν(s) to |g| will contribute at most θν(s) to |g|0| + |g|1|, while every
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x contributing ν(x) to |g| will contribute ν(x) to |g|0| + |g|1|. We conclude that
for all g ∈ B′ we have

|g|0| + |g|1|
|g| <

ην(x) + (1 − η)min ν

ην(x) + (1 − η)θ min ν
=: ζ < 1.

This means every element of weight n in B′ can be written as a pair of elements
of G with total weight at most ζn, or in formulæ

FB′(τ) ≤ (Fν(ζτ))2.

The series FB′ thus converges up to ζρ(ν) > ρ(ν); the same holds for FB . Then
the series Fν converges up to min(ζρ(ν), σ) > ρ(ν), a contradiction. �

5.2. The subgroup P̃ . Let e be the ray 1∞ and let P̃ be the corre-
sponding parabolic subgroup.

Theorem 5.14. P̃ /P̃ ′ is an infinite elementary 2-group generated by the
images of b̃, c̃ = (1, d̃), d̃ = (1, b̃) and of all elements of the form (1, . . . , 1, u2) or
(1, . . . , 1, v). The following decomposition holds:

P̃ =

(
B̃ ×

(
(C̃ × ((K̃ × . . .) ⋊ 〈u2, v〉)) ⋊ 〈b̃, u2, d̃, v〉

))
⋊ 〈b̃, u2〉.

Define the following subgroups of G̃n:

B̃n = 〈b̃, d̃〉G̃n ; C̃n = 〈b̃, ṽ〉G̃n ; K̃n = 〈u, v〉G̃n ;

Q̃n = B̃n ∩ P̃n; R̃n = C̃n ∩ P̃n; Sn = K̃n ∩ P̃n.

Proposition 5.15. These subgroups have the following structure:

P̃n = (B̃n−1 × Q̃n−1) ⋊ 〈b̃, u2〉;
Q̃n = (C̃n−1 × R̃n−1) ⋊ 〈b̃, u2〉;
R̃n = (K̃n−1 × S̃n−1) ⋊〈[b,v]〉 〈b, u2, v〉;
S̃n = (K̃n−1 × S̃n−1) ⋊〈[u2,v]〉 〈u2, v〉.

P r o o f. The claims match those of Proposition 5.3, and are proved by
restricting to elements preserving en the ‘y’ and ‘z’ in decompositions of the kind
(x × y) ⋊ z. �
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Fig. 3. The finite group G̃n and its subgroups

The group G̃n and its subgroups H̃n, B̃n, C̃n, K̃n, P̃n, R̃n, Q̃n, S̃n are arranged
in the lattice of Figure 3, with the quotients or the indices are represented next
to the arrows.

6. The group Γ. The next three groups we study are subgroups of
Aut(T3). Denote by a the automorphism of T3 permuting cyclically the top three
branches. Let t be the automorphisms of T3 defined recursively by

t(0xσ) = 0xσ, t(1xσ) = 1xσ, t(2σ) = 2t(σ).

Then Γ is the subgroup of Aut(T3) generated by {a, t}; its growth was studied by
Jacek Fabrykowski and Narain Gupta [15].

We write Hn = StabΓ(n) and H = H1. Explicitly, the map φ restricts to

φ :
{

t → (a, 1, t), ta → (t, a, 1), ta
2 → (1, t, a).
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Define the elements x = at, y = ta of Γ. Let K be the subgroup of Γ
generated by x and y, and let L be the subgroup of K generated by K ′ and cubes
in K.

Proposition 6.1. We have the following diagram of normal subgroups:

Γ

K H = Stab
Γ

(1)

Γ′ = K ∩ H = [K, H ]

L = 〈K ′, K3〉 = γ3(Γ)

K ′ H ′ = φ−1(Γ′ × Γ′ × Γ′) = StabΓ(2)

〈L × L × L, x3y−3, [x, y3]〉 = γ4(Γ)

〈L × L × L, [x, y3]〉 = γ5(Γ)

�
�

�
�

�

〈a| a3〉

@
@

@
@@

〈a| a3〉

@
@

@
@

@

〈x|x3〉

�
�

�
��

〈t| t3〉

�
�

�
�

�

@
@

@
@@

where the quotients are represented next to the arrows; all edges represent normal
inclusions of index 3. Furthermore L = K ∩ φ−1(K × K × K).

P r o o f. First we prove K is normal in Γ, of index 3, by writing yt =
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x−1y−1, ya−1
= y−1x−1, yt−1

= ya = x; similar relations hold for conjugates of

x. A transversal of K in Γ is 〈a〉. All subgroups in the diagram are then normal.

Since [a, t] = y−1x = tat−1, we clearly have Γ′ < K ∩ H. Now as Γ′ 6= K

and Γ′ 6= H and Γ′ has index 32, we must have Γ′ = K ∩ H. Finally [a, t] =

[x, t]t
−1

, so Γ′ = [K,H].

Next x3 = [a, t][t, a−1][a−1, t−1] and similarly for y, so K3 < Γ′ and

L < Γ′. Also, φ[x, y] = (y−1, y−1, x−1) and φx3 = (y, x, y) both belong to

K × K × K, while [a, t] does not; so L is a proper subgroup of Γ′, of index

3 (since K/L is the elementary abelian group (Z/3Z)2 on x and y).

Consider now H ′. It is in StabΓ(2) since H = StabΓ(1). Also, [t, ta] =

y3[y−1, x] and similarly for other conjugates of t, so H ′ < L, and φ[t, ta] =

([a, t], 1, 1), so φ(H ′) = Γ′ × Γ′ × Γ′. Finally H ′ it is of index 3 in L (since

H/H ′ = (Z/3Z)3 on t, ta, ta
−1

), and since StabΓ(2) is of index 34 in Γ (with

quotient Z/3Z ≀ Z/3Z) we have all the claimed equalities. �

Proposition 6.2. Γ is a just-infinite fractal group, is regular branch over

Γ′, and has the congruence property.

P r o o f. Γ is fractal by Lemma 2.2 and the nature of the map φ. By direct

computation, [Γ : Γ′] = [Γ′ : φ−1(Γ′ × Γ′ × Γ′)] = [φ−1(Γ′ × Γ′ × Γ′) : Γ′′] = 32, so

Γ is branched on Γ′. Then Γ′′ = γ5(Γ), as is shown in [4], so Γ′′ has finite index

and Γ is just-infinite by Proposition 3.5.

Γ′ ≥ StabΓ(2), so Γ has the congruence property. �

Proposition 6.3. We have, with the notation introduced in Defini-

tion 1.1,

φ(H) = (Γ′ × Γ′ × Γ′) ⋊3−ab 〈t, ta, ta
2〉,

φ(Γ′) = (Γ′ × Γ′ × Γ′) ⋊3−ab 〈[a, t], [a2, t]〉.

Theorem 6.4. The subgroup K of Γ is torsion-free; thus Γ is virtually

torsion-free.

P r o o f. For 1 6= g ∈ K, let |g|t, the t-length of g, denote the minimal

number of t±1’s required to write g as a word over the alphabet {a±1, t±1}. We

will show by induction on |g|t that g is of infinite order.

First, if |g|t = 1, i.e. g ∈ {x±1, y±1}, we conclude from φ(x3) = (∗, ∗, x)

and φ(y3) = (∗, ∗, y) that g is of infinite order.

Suppose now that |g|t > 1. If g ∈ L, then φ(g) = (g0, g1, g2) ∈ K×K×K

and it suffices to show that one of the gi is of infinite order—this follows by
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induction since |gi|t < |g|t and some gi 6= 1. We may thus suppose that g ∈ K \L.

Up to symmetry, it suffices also to consider elements g of the form ℓx, ℓxy and

ℓxy−1, for ℓ ∈ L. Write φ(ℓ) = (ℓ0, ℓ1, ℓ2).

In the first case, we have φ(g3) = φ(ℓx)3 = (aℓ2tℓ1ℓ0, ∗, ∗). It suffices to

show that the first coordinate of this expression is non-trivial, as K contains at

worst only 3-torsion, being contained in the 3-Sylow of Aut(T3). Now map Γ to

Γ/Γ′, an elementary abelian group of order 9. One checks that ℓ0ℓ1ℓ2 ≡ 1 in the

abelian quotient, so the first coordinate maps to at 6≡ 1 in Γ/Γ′.
The second case is handled in the same way. Finally, if g = ℓxy−1, then

φ(g3) ∈ L × L × L, so φ2(g3) ∈ K × . . . × K (9 factors); each factor has strictly

smaller t-length than g, and as before the projection in one of the coordinates

onto the abelian quotient gives some x 6≡ 1. �

Proposition 6.5. The finite quotients Γn = Γ/Hn of Γ have order

33n−1+1 for n ≥ 2, and 3 for n = 1.

P r o o f. Follows immediately from [Γ : Γ′] = 32 and [Γ′ : φ−1(Γ′ × Γ′ ×
Γ′)] = 32. �

Corollary 6.6. The closure Γ of Γ in Aut(T ) is isomorphic to the profi-

nite completion Γ̂ and is a pro-3-group. It has Hausdorff dimension 2/3.

6.1. The subgroup P . Let e be the infinite sequence 2∞, and let P be

the corresponding parabolic subgroup.

Theorem 6.7. P/P ′ is an infinite elementary 3-group generated by t, ta

and all elements of the form (1, . . . , 1, [a, t]). The following decomposition holds:

P =

(
Γ′×Γ′×

(
(Γ′×Γ′×((Γ′×Γ′×. . .)⋊3−ab 〈[a, t]〉))⋊3−ab 〈[a, t]〉

))
⋊3−ab 〈t, ta〉,

where each factor (of nesting n) in the decomposition acts on the subtree just

below some en but not containing en+1.

Define the following subgroups of Γn:

Γ′n = 〈[a, t]〉Γn ; Qn = Γ′n ∩ Pn.

Proposition 6.8. These subgroups have the following structure:

Pn = (Γ′n−1 × Γ′n−1 × Qn−1) ⋊3−ab 〈t, ta〉;
Qn = (Γ′n−1 × Γ′n−1 × Qn−1) ⋊3−ab 〈[a, t]〉.
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7. The group Γ. Recall a denotes the automorphism of T3 permuting

cyclically the top three branches. Let now t be the automorphism of T3 defined

recursively by

t(0xσ) = 0xσ, t(1xσ) = 1xσ, t(2σ) = 2t(σ).

Then Γ is the subgroup of Aut(T3) generated by {a, t}.
We write Hn = StabΓ(n) and H = H1. Explicitly, the map φ restricts to

φ :
{

t → (a, a, t), ta → (t, a, a), ta
2 → (a, t, a).

Define the elements x = ta−1, y = a−1t of Γ, and let K be the subgroup

of Γ generated by x and y. Then K is normal in Γ, because xt = y−1x−1,

xa = x−1y−1, xt−1
= xa−1

= y, and similar relations hold for conjugates of y.

Moreover K is of index 3 in Γ, with transversal 〈a〉.
Lemma 7.1. H and K are normal subgroups of index 3 in Γ, and

Γ
′
= StabK(1) = H ∩ K is of index 9; furthermore φ(H ∩ K) ⊳ K × K × K. For

any element g = (u, v,w) ∈ φ(H ∩ K) one has wvu ∈ H ∩ K.

P r o o f. First note that StabK(1) = 〈x3, y3, xy−1, y−1x〉, for every word in

x and y whose number of a’s is divisible by 3 can be written in these generators.

Then compute

φ(x3) = (y, x−1y−1, x), φ(y3) = (x−1y−1, x, y),

φ(xy−1) = (1, x−1, x), φ(y−1x) = (y, 1, y−1).

The last assertion is also checked on this computation. �

Proposition 7.2. Writing c = [a, t] = x−1y−1x−1 and d = [x, y], we

have the following diagram of normal subgroups:
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Γ

K H

Γ
′
= 〈c, ct, ca−1

, cat〉 = K ∩ H = [K, H ]

K ′ = 〈d, dt, da−1

, dat〉 H ′

Γ
′′

= φ−1(K ′ × K ′ × K ′)

K ′′

�
�

��

〈a| a3〉 @
@

@@

〈a| a3〉

@
@

@@
〈x,y|x3,y3,x=y〉

�
�

��
〈t0,t1,t2| t

3

0
,t0=t1=t2〉

�
�

�

Z
2 @

@
@@

(Z/3Z)2

@
@

@Z
2

�
�

��

(Z/3Z)2

where the quotients are represented next to the arrows; additionally,

K/K ′ = 〈x, y| [x, y]〉 ∼= Z
2,

Γ
′
/Γ
′′

= 〈c, ct, ca−1
, cat| [c, ct], . . .〉 ∼= Z

4,

K ′/K ′′ = 〈d, dt, da−1
, dat| [d, dt], . . . , (d/dat)3, (da−1

/dt)3〉 ∼= Z
2 × (Z/3Z)2.

Writing each subgroup in the generators of the groups above it, we have

K = 〈x = at−1, y = a−1t〉,
H = 〈t, t1 = ta, t2 = ta

−1〉,
Γ
′
= 〈b1 = xy−1, b2 = y−1x, b3 = x3, b4 = y3〉
= 〈c1 = tt−1

1 , c2 = tt1t, c3 = tt−1
2 , c4 = tt2t〉.

Proposition 7.3. Γ is a fractal group, is weakly branch, and just-

nonsolvable; however it is not branch.
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P r o o f. Γ is fractal by Lemma 2.2 and the nature of the map φ. The
subgroup K described above has an infinite-index derived subgroup K ′ (with
infinite cyclic quotient), from which we conclude that Γ is not just-infinite; indeed

K ′ is normal in Γ and Γ/K ′ ∼= Z
2

⋊

0B� −1 1
−1 0

1CA is infinite. �

Proposition 7.4. The subgroup K of Γ is torsion-free; thus Γ is virtually
torsion-free.

P r o o f. For 1 6= g ∈ K, let |g|t, the t-length of g, denote the minimal
number of t±1’s required to write g as a word over the alphabet {a±1, t±1}. We
will show by induction on |g|t that g is of infinite order.

First, if |g|t = 1, i.e. g ∈ {x±1, y±1}, we conclude from φ(x3) = (∗, ∗, x)
and φ(y3) = (∗, ∗, y) that g is of infinite order.

Suppose now that |g|t > 1, and g ∈ Hn \ Hn+1. Then there is some
sequence σ of length n that is fixed by g and such that g|σ 6∈ H. By Lemma 7.1.,
g|σ ∈ K, so it suffices to show that all g ∈ K \ H are of infinite order.

Such a g can be written as φ−1(u, v,w)z for some (u, v,w) ∈ φ(K ∩
H) and z ∈ {x±1, y±1}; by symmetry let us suppose z = x. Then g3 =
φ−1(uavawt, vawtua,wtuava) = φ−1(g0, g1, g2), say. For any i, we have |gi|t ≤
|g|t, because all the components of φ(x) and φ(y) have t-length ≤ 1. We distin-
guish three cases:

1. gi = 1 for some i. Then consider the image gi of gi in Γ/Γ
′
. By Lemma 7.1,

wvu ∈ G′, so gi = 1 = a2t. But this is a contradiction, because Γ/Γ
′

is
elementary abelian of order 9, generated by the independent images a and
t.

2. 0 < |gi|t < |g|t for some i. Then by induction gi is of infinite order, so g3

too, and g too.

3. |gi|t = |g|t for all i. We repeat the argument with gi substituted for g. As
there are finitely many elements h with |h|t = |g|t, we will eventually reach
either an element of shorter length or an element already considered. In
the latter case we obtain a relation of the form φn(g3n

) = (. . . , g, . . .) from
which g is seen to be of infinite order. �

Proposition 7.5. The finite quotients Γn = Γ/Hn of Γ have order

3
1
4
(3n+2n+3) for n ≥ 2, and 3

1
2
(3n−1) for n ≤ 2.

P r o o f. Define the following family of two-generated finite abelian groups:

An =

{
〈x, y|x3n/2

, y3n/2
, [x, y]〉 if n ≡ 0[2],

〈x, y|x3(n+1)/2
, y3(n+1)/2

, (xy−1)3
(n−1)/2

, [x, y]〉 if n ≡ 1[2].
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First suppose n ≥ 2; Consider the diagram of groups described above, and quo-
tient all the groups by Hn. Then the quotient K/K ′ is isomorphic to An, gener-

ated by x and y, and the quotient K ′/Γ
′′

is isomorphic to An−1, generated by [x, y]

and [x, y]t. As |An| = 3n, the index of K ′n in Γn is 3n+1 and the index of Γ
′′
n is 32n.

Then as Γ
′′
n
∼= K3

n−1 and |Γ′′2 | = 1 we deduce by induction that |Γ′′n| = 3
1
4
(3n−6n+3)

and |K ′n| = 3
1
4
(3n−2n−1), from which |Γn| = 32n + |Γ′′n| = 3

1
4
(3n+2n+3) follows.

For n ≤ 2 we have Γn = Aut(T )n = Z/3 ≀ . . . ≀ Z/3. �

Corollary 7.6. The closure Γ of Γ in Aut(T ) has Hausdorff dimension
1/2.

Proposition 7.7. We have

φ(H) = (K ′ × K ′ × K ′) ⋊A 〈t0, t1, t2〉,
φ(K ′) = (K ′ × K ′ × K ′) ⋊B 〈d, dt〉,

where A is such that 〈t0, t1, t2〉/A ∼= Z
4
⋊Z/3Z and B is such that 〈d, dt〉/B ∼= Z

2.

7.1. The subgroup P . Let e be the infinite sequence 2∞, and let P be
the corresponding parabolic subgroup.

Theorem 7.8. P/P ′ is the direct product of (Z/3Z)2 (generated by t and
atat−1a) and an infinitely-generated free abelian group, generated by [tt1t, tt2t].
The following decomposition holds:

P =

(
K ′×K ′×

(
(K ′×K ′×((K ′×K ′×. . .)⋊〈[tt1t, tt2t]〉))⋊〈[tt1t, tt2t]〉

))
⋊〈t, t1t−1

2 〉,

where each factor (of nesting n) in the decomposition acts on the subtree just
below some en but not containing en+1.

Define the following subgroups of Γn:

K ′n = 〈x, y〉′Γn ; Qn = K ′n ∩ Pn.

Proposition 7.9. These subgroups have the following structure:

Pn = (K ′n−1 × K ′n−1 × Qn−1) ⋊3−ab (Z4
⋉ Z/3Z);

Qn = (K ′n−1 × K ′n−1 × Qn−1) ⋊ Z
2.
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8. The group Γ. Recall a denotes the automorphism of T3 permuting
cyclically the top three branches. Let now t be the automorphism of T3 defined
recursively by

t(0xσ) = 0xσ, t(1xσ) = 1xσ, t(2σ) = 2t(σ).

Then Γ is the subgroup of Aut(T3) generated by {a, t}; it was studied by
Narain Gupta and Said Sidki [22, 23, 32, 33].

We will use the following known facts:

Theorem 8.1. Γ is a torsion 3-group.

Proposition 8.2. We have the following diagram of normal subgroups:

Γ

H = Stab

Γ

(1)

Γ
′
= [Γ, H ]

γ3(Γ) = Γ
3

= Stab

Γ

(2)

H ′ = φ−1(Γ
′
× Γ

′
× Γ

′
)

〈a| a3〉

〈t| t3〉

[a,t]

(at)3

where the quotients are represented next to the arrows; all edges represent normal
inclusions of index 3.

P r o o f. Clearly H is normal of index 3, being the kernel of the epimor-

phism a → a, t → 1. Then Γ
′
6= H (as can be checked in the finite quotient Γ2)

but is of index at most 32, so has precisely that index. Moreover, Γ
′
is generated

by the [a±1, t±1]: one has [a, t]a = [a−1, t][a, t]−1, [a, t]t = [a, t]−1[a, t−1], etc.
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γ3(Γ) < Γ
3

holds in all 3-groups, and Γ
3

has index 33 because it is 2-
generated 2-step nilpotent.

Now consider H ′. It is in Stab
Γ
(2) since H = Stab

Γ
(1). Also, [t, ta] =

(ta)3(a−1ta−1)3 and similarly for other conjugates, so H ′ < Γ
3
, and

φ[t−a2
t−a, t−at−1] = ([a, t], 1, 1), so φ(H ′) = Γ

′
× Γ

′
× Γ

′
. Finally H ′ it is of

index 3 in Γ
3

(since H/H ′ = (Z/3Z)3 on t, ta, ta
−1

), and since Stab
Γ
(2) is of

index 34 in Γ (with quotient Z/3Z ≀Z/3Z) we have all the claimed equalities. �

Proposition 8.3. Γ is a just-infinite fractal group, and is a regular

branch group over Γ
′
.

P r o o f. Γ is fractal by Lemma 2.2 and the nature of the map φ. By direct

computation, [Γ : Γ
′
] = [Γ

′
: φ−1(Γ

′
× Γ

′
× Γ

′
)] = [φ−1(Γ

′
× Γ

′
× Γ

′
) : Γ

′′
] = 32, so

Γ is branched on Γ
′
and is just-infinite by Proposition 3.5. �

Proposition 8.4. Γ
′
≥ Stab

Γ
(2), so Γ has the congruence property.

Proposition 8.5. We have

φ(H) = (Γ
′
× Γ

′
× Γ

′
) ⋊3−ab 〈t, ta, ta

2〉,

φ(Γ
′
) = (Γ

′
× Γ

′
× Γ

′
) ⋊3−ab 〈[a, t], [a2, t]〉.

8.1. The subgroup P . Let e be the infinite sequence 2∞, and let P be
the corresponding parabolic subgroup.

Theorem 8.6. P/P ′ is an infinite elementary 3-group generated by t,
tata

2
and all elements of the form (1, . . . , 1, ttata

2
). The following decomposition

holds:

P=

(
Γ
′
×Γ
′
×
(
(Γ
′
×Γ
′
×((Γ

′
×Γ
′
× . . .)⋊3−ab〈ttata

2〉))⋊3−ab〈ttata
2〉
))

⋊3−ab〈t, tata
2〉,

where each factor (of nesting n) in the decomposition acts on the subtree just
below some en but not containing en+1.

Define the following subgroups of Γn:

Γ
′
n = 〈[a, t]〉Γn ; Qn = Γ

′
n ∩ Pn.
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Proposition 8.7. These subgroups have the following structure:

Pn = (Γ
′
n−1 × Γ

′
n−1 × Qn−1) ⋊3−ab 〈t, tata

2〉;

Qn = (Γ
′
n−1 × Γ

′
n−1 × Qn−1) ⋊3−ab 〈ttata

2〉.

9. Quasi-regular representations. In this section we show how the
information we gathered on the groups and their subgroups yields results on their
representations. For G a group acting on a tree and P its parabolic subgroup,
we let ρG/P denote the quasi-regular representation of G on the space ℓ2(G/P ).

First of all consider the infinite-dimensional representations ρG/P . The
criterion of irreducibility for quasi-regular representations was discovered by
George Mackey and is as follows (the definition of commensurator is given af-
ter the theorem’s statement):

Theorem 9.1 (Mackey [27, 12]). Let G be an infinite group and let P
be any subgroup of G. Then the quasi-regular representation ρG/P is irreducible
if and only if commG(P ) = P .

Definitiom 9.2. The commensurator (also called quasi-normalizer) of
a subgroup H of G is

commG(H) = {g ∈ G|H ∩ Hg is of finite index in H and Hg}.

Equivalently, letting H act on the left on the right cosets {gH},

commG(H) = {g ∈ G|H · (gH) and H · (g−1H) are finite orbits}.

The equivalence follows, for T a finite transversal, from

H =
⊔

t∈T⊂H

t · (H ∩ Hg) ⇐⇒ HgH =
⊔

t∈T⊂H

t · gH.

Proposition 9.3. If G is weakly branch, then commG(P ) = P .

P r o o f. Take g ∈ G \ P , with P = StabG(e) for some ray e; we will show
that P ∩ P g is of infinite index in P g. Let n be such that σ := e1 . . . en 6=
g(e1 . . . en). Then RistP g(σ) = RistG(σ), while by Lemma 3.3 the index of
RistP∩P g(σ) = RistP (σ) in RistG(σ) is infinite. �
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Corollary 9.4. If G is weakly branch, then ρG/P is irreducible.

The quasi-regular representations we consider are good approximants of
the regular representation in the following sense:

Theorem 9.5. ρG is a subrepresentation of
⊗

P parabolic ρG/P .

P r o o f. Since
⋂

g∈G P g = 1, it follows that the G-space G is a subspace
of
∏

g∈G G/Pg. The representation on a product of spaces is the tensor product
of the representation on the spaces. �

We have a continuum of parabolic subgroups Pe = StabG(e), where e
runs through the boundary of a tree, so formally we also have a continuum of
quasi-regular representations. If G is countable, there are uncountably many
non-equivalent representations, because among the uncountably many Pe only
countably many are conjugate. We therefore have the

Theorem 9.6. There are uncountably many non-equivalent representa-
tions of the form ρG/P , where P is a parabolic subgroup.

We now consider the finite-dimensional representations ρG/Pn
, where Pn

is the stabilizer of the vertex at level n in the ray defining P . These are permu-
tational representations on the sets G/Pn. The ρG/Pn

are factors of the represen-
tation ρG/P . Noting that P =

⋂
n≥0 Pn, it follows that

ρG/Pn
⇒ ρG/P ,

in the sense that for any non-trivial g ∈ G there is an n ∈ N with ρG/Pn
(g) 6= 1.

9.1. Hecke algebras. Corollary 9.4 showed that the quasi-regular rep-
resentation ρG/P is irreducible for all of our examples. We now describe the
decomposition of the finite quasi-regular representations ρG/Pn

. It turns out that
it is closely related to the orbit structure of Pn on G/Pn, through the Hecke
algebra. The result we shall prove is:

Theorem 9.7. ρG/Pn
and ρG̃/P̃n

decompose as a direct sum of n + 1

irreducible components, one of degree 2i for each i ∈ {1, . . . , n − 1} and two of
degree 1.

ρΓ/P , ρΓ/P and ρ
Γ/P

decompose as a direct sum of 2n + 1 irreducible

components, two of degree 2i for each i ∈ {1, . . . , n − 1} and three of degree 1.

The proof of this theorem will appear after the following definitions and
lemmata.
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Definition 9.8. Let G be a group and P a subgroup. Set Q = commG(P ),
and define

C[G,P ] =
{

f : Q → C

∣∣∣ f(pqp′) = f(q)∀p, p′ ∈ P and supp(f) ⊂
⋃

finite

PqP
}
,

i.e. those (P,P )-invariant functions on Q whose support is a finite union of
(P,P )-double cosets. C[G,P ] is an algebra for the convolution product

(f · g)(x) =
∑

y∈G/P

f(xy)g(y−1).

The Hecke algebra (also called the intersection algebra) L(G,P ) is the
weak closure of C[G,P ] in L(ℓ2(G/P )).

A few remarks are in order. First, the convolution product is well defined
on C[G,P ], since every double coset PqP is a finite union of left (or right) cosets.
Second, L(G,P ) coincides with the commutant ρG/P (G)′ of the right-regular
representation of G in L(ℓ2(G/P )). That L(G,P ) commutes with ρ′ is obvious,
since these two operators derive from left- and right-actions on G. That L(G,P )
is the full commutant requires an argument, based on approximation of functions
in L(G,P ) by finite-support functions.

Third, the whole theory of Hecke algebra can be extended to locally com-
pact G and compact-open P — see for instance [34]. One then defines C[G,P ]
as those bi-P -invariant continuous maps G → C whose support is contained in a
finite union of PJP , where the J are compact-open subgroups of G. This algebra
is represented in L(L2(G/P ), µ), where µ is the projection of the Haar measure
to G/P (which, beware, need not be G-invariant!). We shall not make use of this
theory.

A variant of this notion, which we will use, is obtained by taking G
profinite and P closed. Then C[G,P ] consists of those bi-P -invariant continuous
maps G → C whose support is contained in a finite union of PJP , where the J
are neighbourhoods of the identity in G.

L(G,P ) is topologically spanned by compactly supported (P−P )-biinvariant
functions on G. The following result stresses the importance of the Hecke algebra
in the study of representation decomposition:

Theorem 9.9 ([13, Section 11D]). Suppose [G : P ] is finite. Then
L(G,P ) is a semi-simple algebra. There is a canonical bijection between iso-
typical components of ρG/P and simple factors of L(G,P ), which maps χn (for χ
simple) to Mn(C).
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Then, if L(G,P ) is abelian, its decomposition in simple modules is has as
many components as there are double cosets PgP in G.

In our examples, the spaces have the following order of magnitude: the
core of Pn is the normal subgroup Hn =

⋂
g∈G P g

n , of index ∼ een
. The subgroup

Pn is of index ∼ en. The number of double cosets is ∼ n. We give the precise
results for our five examples.

9.2. Orbits in G/Pn. As the double cosets PngPn are in one-to-one
correspondence with the orbits of Pn on G/Pn we shall now describe the orbits
for this action.

Lemma 9.10. There are two Kn-orbits on Σn: those sequences starting
with 0 and those starting with 1.

Pn has n + 1 orbits in Σn; they are 1n and the 1i0Σn−1−i for 0 ≤ i < n.
The orbits of P in TΣ are the 1i0Σ∗ for all i ∈ N.

P r o o f. As Kn contains Kn−1 × Kn−1, it follows by induction that Kn

acts transitively on the sets 00Σn−2 and 01Σn−2. As Kn contains (ab)2 = (ca, ac),
it also permutes 00Σn−2 and 01Σn−2, so it acts transitively on 0Σn−1. The same
holds for 1Σn−1.

The last assertion follows from Theorem 4.4.

Lemma 9.11. There are two K̃n-orbits on Σn: those sequences starting
with 0 and those starting with 1.

P̃n has n + 1 orbits in Σn; they are 1n and the 1i0Σn−1−i for 0 ≤ i < n.
The orbits of P̃ in TΣ are the 1i0Σ∗ for all i ∈ N.

P r o o f. Completely similar to Lemma 9.10. �

Lemma 9.12. There are three Γ′n-orbits on Σn: those sequences starting
with 0, those starting with 1 and those starting with 2.

Pn has 2n+1 orbits in Σn; they are 2n and the 2i0Σn−1−i and 2i1Σn−1−i

for 0 ≤ i < n. The orbits of P in TΣ are the 2i0Σ∗ and 2i1Σ∗ for all i ∈ N.

P r o o f. As Γ′n contains Γ′n−1 × Γ′n−1 × Γ′n−1, it follows by induction that
Γ′n acts transitively on the sets 00Σn−2, 01Σn−2 and 02Σn−2. As Γ′n contains
[a, t] = (ta−1, a, t−1), it also permutes 00Σn−2, 01Σn−2 and 02Σn−2, so it acts
transitively on 0Σn−1. The same holds for 1Σn−1 and 2Σn−1.

The last assertion follows from Theorem 6.7. �

Lemma 9.13. For the group Γ, there are three K ′n-orbits on Σn: those
sequences starting with 0, those starting with 1 and those starting with 2.

Pn has 2n+1 orbits in Σn; they are 2n and the 2i0Σn−1−i and 2i1Σn−1−i

for 0 ≤ i < n. The orbits of P in TΣ are the 2i0Σ∗ and 2i1Σ∗ for all i ∈ N.
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P r o o f. As K ′n contains K ′n−1×K ′n−1×K ′n−1, it follows by induction that
K ′n acts transitively on the sets 00Σn−2, 01Σn−2 and 02Σn−2. As K ′n contains
[x, y] = (at, at, ta), it also permutes 00Σn−2, 01Σn−2 and 02Σn−2, so it acts
transitively on 0Σn−1. The same holds for 1Σn−1 and 2Σn−1.

The last assertion follows from Theorem 7.8. �

Lemma 9.14. There are three Γ
′
n-orbits on Σn: those sequences starting

with 0, those starting with 1 and those starting with 2.

Pn has 2n+1 orbits in Σn; they are 2n and the 2i0Σn−1−i and 2i1Σn−1−i

for 0 ≤ i < n. The orbits of P in TΣ are the 2i0Σ∗ and 2i1Σ∗ for all i ∈ N.

P r o o f. Completely similar to Lemma 9.12. �

9.3. Gelfand pairs. We have seen the Hecke algebra L(G,Pn) is roughly
of dimension n. Its structure is further simplified by the following consideration:

Definition 9.15 ([14]). Let G be a group and P any subgroup. The
pair (G,P ) is a Gelfand pair if all irreducible subrepresentations of ρG/P have
multiplicity 1.

Lemma 9.16 ([13, Exercise 18, page 306], [27, Theorem 1.20]). (G,P )
is a Gelfand pair if and only if L(G,P ) is abelian.

Proposition 9.17. In our five examples the pairs (G,Pn) form a Gelfand
pair for all n ∈ N.

P r o o f. Clearly P0 = G so L(G,P0) = C is abelian. Furthermore, Pn+1

is a subgroup of Pn, and the natural map G/Hn+1 ։ G/Hn induces a map
Pn+1/Hn+1 ։ Pn/Hn, so L(G,Pn) ∼= L(G/Hn, Pn/Hn) is a direct summand of
L(G,Pn+1), and their dimensions differ by d − 1, which is 1 or 2 (recall d is the
degree of the regular tree on which G acts). Now writing

L(G,Pn+1) = L(G,Pn) ⊕ A,

we see that A is semi-simple and of dimension d − 1 < 4. All such semisimple
algebras are abelian, A ∼= C

d−1, so L(G,Pn+1) is abelian too. �

P r o o f o f Th e o r e m 9.7. By Proposition 9.17, the Hecke algebra
L(G,Pn) is abelian, so it is isomorphic to C

Nn , where Nn is its dimension.
This Nn in turn is equal to the number of double cosets PngPn. These num-
bers Nn are computed in the corollaries in Subsection 9.2. By Theorem 9.9,
the number of irreducible subrepresentations of ρG/Pn

is Nn. Finally, ρG/Pn
=

ρG/Pn−1
⊕ An,1 ⊕ . . . ⊕ An,d−1, where the An,i are irreducible representations.
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Since dim ρG/Pn
= dn and dimAi is a power of d, the only possibility is that

dim An,i = dn−1 for all i ∈ {1, . . . , d − 1}, and

ρG/Pn
= ρG/P0

⊕ A1,1 ⊕ . . . ⊕ A1,d−1 ⊕ . . . ⊕ An,1 ⊕ . . . ⊕ An,d−1. �

It may well be that for all GGS groups the Hecke algebra associated to a
parabolic subgroup is commutative.
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