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GROUPS WITH THE MINIMAL CONDITION ON

NON-“NILPOTENT-BY-FINITE” SUBGROUPS

O. D. Artemovych

Communicated by V. Drensky

Abstract. We characterize the groups which do not have non-trivial per-
fect sections and such that any strictly descending chain of non-“nilpotent-
by-finite” subgroups is finite.

0. Let X be a property pertaining to subgroups. One of approaches
to study the structure of groups is to investigate the groups in which the set
of non-X-subgroups is small in some sense (or in other words, the groups which
have many X-subgroups). There is increasing interest in groups with many nilpo-
tent subgroups. Problems of this type have been considered in several papers.
For instance, the examples of non-nilpotent groups with nilpotent and subnor-
mal proper subgroups (the so-called groups of Heineken-Mohamed type) were
constructed by Heineken and Mohamed [15], Hartley [14], Menegazzo [16] and
others. In this way Bruno [6]–[8], Bruno and Phillips [9] and Asar [4] have stud-
ied the minimal non-“nilpotent-by-finite” groups (i.e. non-“nilpotent-by-finite”
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groups with nilpotent-by-finite proper subgroups). Their results imply that any
minimal non-“nilpotent-by-finite” group G is either a p-group in which any two
proper subgroups generate a proper subgroup or G = V ⋊ H is a semidirect
product of a normal subgroup V and a quasicyclic p-subgroup H, where V is a
special q-group, V ′ is centralized by H and V/V ′ is a minimal normal subgroup
of G/V ′ (p and q are distinct primes).

One of the possible interpretations of the requirement that “many sub-
groups of G satisfy X” is that “the set of subgroups in G not having X satisfies
the minimal condition”. In this direction the aim of our article is to consider
groups with the minimal condition on non-“nilpotent-by-finite” subgroups Min-
NF . We say that a group G satisfies Min-NF if for every strictly descending
chain {Gn | n ∈ N} of subgroups in G there exists a number n0 ∈ N such that
Gn is a nilpotent-by-finite subgroup for any integer n ≥ n0. For the next we
need the concept of an HM∗-group first introduced by Asar [3] in the class of
p-groups with the normalizer condition. We extend this notion and call G an
HM∗-group if its commutator subgroup G′ is hypercentral and G/G′ is a divisi-
ble Černikov p-group. Obviously any group of Heineken-Mohamed type and any
minimal non-“nilpotent-by-finite” group are HM∗-groups and satisfy Min-NF .

Notice that Černikov (see e.g. [11]) and Šunkov [20] have studied groups
with the minimal condition on non-abelian subgroups; Phillips and Wilson [17]
have investigated groups in which the set of non-“locally nilpotent” subgroups
satisfies the minimal condition. Recently Dixon, Evans and Smith [12] have
shown that a locally graded group with the minimal condition on non-nilpotent
subgroups is either nilpotent or locally finite.

In this paper we characterize groups without non-trivial perfect sections
and which satisfy Min-NF . Namely, we prove:

Theorem. Let G be a group without non-trivial perfect sections. Then
G satisfies Min-NF if and only if it is of one of the following types:

(1) G is a nilpotent-by-finite group;

(2) G contains a normal subgroup H of finite index such that

H = H0 · H1 · . . . · Hn (n ≥ 1),

where Hi is an HM∗-group with nilpotent commutator subgroup H ′

i = H ′ ≤
H0 (i = 1, . . . , n), H0 is a nilpotent group with divisible Černikov quotient
group H0/H

′ (in particular, H0/H
′ is trivial) and, furthermore, if k 6= s

(1 ≤ k, s ≤ n), then π(Hk/H
′) ∩ π(Hs/H

′) = ∅.
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Throughout this paper p is a prime and Cp∞ is the quasicyclic p-group. For a
group G, we denote by Z(G) the centre, by G′, G′′, . . . , G(n), . . . the members
of the derived series, by π(G) the set of all primes which divide the orders of
periodic elements in G and by ZpnG the group ring of G over the ring Zpn of
integers modulo a prime power pn. Recall that a section of G is a group of the
form S = H/N for some subgroups N and H of G, where N is normal in H. The
group G is perfect if G′ = G.

We shall also use other standard terminology from [13] and [18].

1. In the sequel we shall need the following lemmas.

Lemma 1. Let G be a group satisfying Min-NF and let A be a subgroup
of G. Then:

(1) A satisfies Min-NF ;

(2) if A is normal in G, then the quotient group G/A satisfies Min-NF ;

(3) if A is a normal non-“nilpotent-by-finite” subgroup, then G/A satisfies the
minimal condition on subgroups.

The proof of the lemma is immediate.
As usual, R is called a right V -ring if each of its right ideals is an intersection of
maximal right ideals of R.

Lemma 2. Let G = A ⋊ B be a semidirect product of an infinite abelian
subgroup A of exponent pn (n ≥ 1) and a quasicyclic q-subgroup B with distinct
primes p and q. If G satisfies Min-NF , then G is a nilpotent group or, considered
as a ZpnB-module, the abelian group A = S0 ⊕ S1 ⊕ · · · ⊕ · · · ⊕ Sm (m ≥ 1) is a
direct sum of simple ZpnB-submodules S1, . . . , Sm and a finite ZpnB-submodule
S0, where S0 ≤ Z(G).

P r o o f. Suppose that G is a non-“nilpotent-by-finite” group. Since A is
abelian, it becomes a right module over the commutative (von Neuman) regular
ring R = ZpnB via the conjugation action on A.

Let u be any non-zero element of the module A such that u /∈ Z(G). Then
the cyclic submodule uR is isomorphic to the right R-module R0 = R/annR(u),
where annR(u) = {r ∈ R | ur = 0}. Moreover R0 is a commutative (von
Neuman) regular ring and each of its ideals is a right R-module. If R0 is a
non-simple module, then it contains a non-zero element b1 such that b1R0 is a
proper ideal in R0. By Proposition 19.24 (d) of [13], b1R0 = e1R0 for some
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idempotent e1 and, furthermore, R0 = e1R0 ⊕ R1 is a direct sum (of rings) for
some finitely generated ideal R1 of R0. If R1 is a non-simple R-module, then it
has a proper submodule e2R1, where e2

2 = e2. Hence R1 = e2R1 ⊕ R2 is a direct
sum for some finitely generated ideal R2 of R0. By a similar argument we obtain
a strictly descending chain of R-submodules R0 > R1 > . . .. This implies that uR
also contains a strictly descending chain of R-submodules {Dm | m ∈ N ∪ {0}},
where D0 = uR and Dm is isomorphic to Rm. By our hypothesis there exists an
integer n such that DnB is a non-“nilpotent-by-finite” subgroup, while Dn+1B
is nilpotent-by-finite and, as a consequence, Dn+1 ≤ Z(G).

It is also clear that Rn is a cyclic R-module. Using the same idea, as above,
we deduce that Dn contains a strictly descending chain of R-submodules {Dnm |
m ∈ N ∪ {0}} (where Dn0 = Dn) such that DnkB is not a nilpotent-by-finite
subgroup for some integer k, while Dn,k+1B is nilpotent-by-finite. Continuing
in this manner we conclude that A contains a simple R-submodule S. By the
theorem of Kaplansky [13, Corollary 19.53], R is a V -ring and S is an injective
R-module. Therefore A = S ⊕ A1 is a direct sum of S and some submodule A1.
Repeating this argument we deduce that there exists an integer l such that

A = A1 ⊕ · · · ⊕ Al ⊕ A0

is a direct sum of simple R-submodules A1 . . . , Al and some R-submodule A0,
where A0B is a nilpotent-by-finite subgroup. It is easily verified that A0 ≤ Z(G)
and so A0 is finite. The result follows. �

Lemma 3. Let G be a non-perfect group with nilpotent-by-finite proper
normal subgroups. Then G satisfies Min-NF if and only if it is of one of the
following types:

(1) G is a nilpotent-by-finite group;

(2) G is a minimal non-“nilpotent-by-finite” group;

(3) G = G′
⋊ S, S ∼= Cp∞, G′ = S1 × · · · × Sn (n ≥ 1) is a p′-subgroup and a

direct product of finitely many Sylow pi-subgroups S1, . . . , Sn, where Si is a
nilpotent subgroup of exponent pmi

i and of derived length di. Furthermore,
for any i there is an integer ki (1 ≤ ki ≤ di) such that S acts trivially

on S
(ki)
i and S

(l−1)
i /S

(l)
i = A0 ⊕ A1 ⊕ · · · ⊕ Am is a finite direct sum of

simple Zp
mi

i

S-submodules A1, . . . Am (m ≥ 1) and a finite Zp
mi

i

S-submodule

A0 under the conjugation action on Si, where A0 ≤ Z(S
(l−1)
i ⋊ S/S

(l)
i )

(i = 1, . . . , n; l = 1, . . . , ki; ki,mi, di ∈ N and S
(0)
i = Si);
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(4) G = A ⋊ S, where S is a minimal non-“nilpotent-by-finite” p-group, A is a
normal nilpotent p′-subgroup and G/S′ is a group of type (3).

P r o o f. (⇐) This part of the proof is evident.

(⇒) First, if the quotient group G/G′ contains two proper subgroups
which generate it, then G = AB is a product of two nilpotent-by-finite proper
normal subgroups A and B. Since A (respectively B) contains an abelian G-
invariant subgroup A0 (respectively B0) of finite index, we conclude that A0B0

is a nilpotent normal subgroup of finite index in G.

Now assume that any two proper subgroups of G/G′ generate a proper
subgroup in G/G′. Hence G/G′ is either a cyclic p-group (and in this case G
is a nilpotent-by-finite group) or the quasicyclic p-group for some prime p. Let
G/G′ ∼= Cp∞. If D is a proper nilpotent G-invariant subgroup of finite index
in G′, then G/DG′′ is an abelian group, which is a contradiction. Thus G′ is a
nilpotent subgroup. Inasmuch as G satisfies Min-NF , it contains a subgroup S
which is a non-perfect minimal non-“nilpotent-by-finite” group.

If S = G, then G is of type (2). Therefore we may suppose that S 6= G.
Then G = G′S and, by Theorem 2.5 of [9], S is a torsion subgroup. Let G =

G/G′′(G′ ∩ S) = G
′

⋊ S. It is easy to see that G satisfies the minimal condition
on normal subgroups Min-n and so, by the theorem of Baer [18, Theorem 5.25]
and Theorem 2.1 of [9], G is a locally finite group. If G is a p-group, then
it is Černikov (see [18, p.156, Corollary 2]). From this it follows that G is a

nilpotent group and we reach a contradiction. Hence G
′

is a p′-subgroup. Our
hypothesis and Theorem B of [5] give that G′ is a π-subgroup for some finite set
of primes π and, as a consequence, G = A ⋊ Q, where Q = S is either a minimal
non-“nilpotent-by-finite” p-group or Q ∼= Cp∞ and A is a p′-subgroup of G′.

Assume that Q is a quasicyclic p-subgroup and A = S1×. . .×Sn is a group
direct product of the Sylow pi-subgroups S1, . . . , Sn. Obviously exp(Si) = pmi

i

for some mi ∈ N (i = 1, . . . , n). Let di be the derived length of Si.

We have seen that there exists an integer m (1 ≤ m ≤ di) such that

S
(m−1)
i Q is a non-“nilpotent-by-finite” subgroup, while S

(m)
i Q is nilpotent-by-

finite. Then [S
(m)
i , Q] = 1. By Lemma 2, S

(l−1)
i /S

(l)
i = A0 ⊕ A1 ⊕ · · · ⊕ Ak is a

direct sum of simple Zp
mi

i

S-submodules A1, . . . , Ak (k ≥ 1) and a finite Zp
mi

i

S-

submodule A0 under the conjugation action on Si, where A0 ≤ Z(S
(l−1)
i Q/S

(l)
i )

(1 ≤ l ≤ m). Thus G is a group of type (3).

Finally, if Q is a minimal non-“nilpotent-by-finite” group, then it is not
difficult to see that G/S′ is a group of type (3). The lemma is proved. �
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Corollary 4. Let G be a group without non-trivial perfect sections. If G
satisfies Min-NF , then it is countable and locally finite.

Lemma 5. Let G be an HM∗-group. Then G satisfies Min-NF if and
only if G′ is a nilpotent subgroup.

P r o o f. (⇐) Let {Kn | n ∈ N} be any strictly descending chain of
subgroups in G. Since G/G′ is Černikov, there is an integer m such that Kn ≤ G′

and so G satisfies Min-NF .

(⇒) If the commutator subgroup G′ is not nilpotent-by-finite, then, in
view of Lemma 2, it has a subnormal non-“nilpotent-by-finite” subgroup S with
all proper normal subgroups nilpotent-by-finite. Then Lemma 3 yields that S is
a non-hypercentral subgroup and we obtain a contradiction. This implies that G′

is a nilpotent-by-finite subgroup and consequently it is nilpotent, as desired. �

Now we give some examples of HM∗-groups.

Examples. (i) First we recall one construction from [5]. Let p and q be
distinct primes and let Fq be the field with q elements. We denote by Fq(α) the
subfield of the algebraic closure of Fq generated by α. If εi is a primitive pi-th
root of 1 (i = 0, 1, 2, . . .), put Fi = Fq(εi) and F =

⋃
∞

i=0Fi. Let A be the additive
group of F , and let B be the multiplicative group which contains the pi-th roots
of 1, where i = 0, 1, 2, . . .. The rule

bab−1 = bpm

· a,

where a ∈ A, b ∈ B and bpm

· a is the product of the elements bpm

and a in the
field F , m is some non-negative integer, defines an action of B on A. The group
Gm = A ⋊ B constructed in this manner is called a Čarin group [5]. The groups
G0 were first considered by Čarin [10].

Since A = G′

m, Gm is an HM∗-group. Moreover it is a minimal non-
“nilpotent-by-finite” group.

(ii) Let F be a field defined as in (i) and J a non-trivial F -F -bialgebra
(it is well known that such a bialgebra J exists). We denote by A and I the
subalgebra








F J . . . J
0 F . . . J
...

...
. . .

...
0 0 . . . F








of the algebra of n × n matrices with the identity element 1 (n ≥ 2) and the
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nilpotent ideal







0 J . . . J
0 0 . . . J
...

...
. . .

...
0 0 . . . 0








of nilpotency index n, respectively. Then the ring A/I ∼= F ⊕ · · · ⊕ F is a direct
sum of n copies of F . It is known that a nilpotent ring I with two operations
“+” and “·” forms a group under the operation a◦ b = a+ b+a · b for all a, b ∈ I.
This group is called the adjoint group of I and denoted by I◦. By Lemma 2.4 of
[2] I◦ is a q-group. Moreover, by the lemma from [21, p. 27], see also [1], I◦ is a
nilpotent group of class n. Since the unipotent subgroup 1 + I is isomorphic to
I◦ and the multiplicative group F ∗ of F is a q′-group, we see that the unit group

U(A) = (1 + I) ⋊ (F ∗ × · · · × F ∗)

of A is a semidirect product of the normal subgroup 1+ I and the direct product
of n copies of F ∗. It is clear that U(A) contains the subgroup

G = (1 + I) ⋊ (B × · · · × B)

of finite index, where B is a quasicyclic p-subgroup of F ∗.

We want to prove that G is an HM∗-group. First we consider the case
n = 2. The commutator

[(
1 i
0 1

)

,

(
x1 0
0 x2

)]

=

(
1 −i
0 1

) (
x1 0
0 x2

)(
1 i
0 1

)(
x−1

1 0

0 x−1
2

)

=

(
1 x1ix

−1
2 − i

0 1

)

∈ 1 + I

for all elements i ∈ J and x1, x2 ∈ B and, as a consequence,

(∗) [1 + I,B × B] = 1 + I.

Now we turn to the general case and, by using a similar argument, obtain that

[1 + I,B × · · · × B
︸ ︷︷ ︸

n times

] = 1 + I,

i.e. G is an HM∗-group with nilpotent commutator subgroup G′ = 1 + I.
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(iii) Let J be a left T -nilpotent F -F -bialgebra with F and B as before. An
example of a left T -nilpotent bialgebra is contained, for instance, in [19, Example
1]. We denote by J1 the bialgebra obtained by adjoining an identity element to
J . Writting A for the subalgebra

(
J1 J
0 F

)

of the 2 × 2 matrix algebra with the identity element 1 and I for the left T -
nilpotent ideal

(
J J
0 0

)

,

we have that 1 + I is a hypercentral q-subgroup by Lemma 2.4 of [2] and the
lemma from [21, p. 27]. By the same argument, as in (ii), we can prove that the
condition (∗) holds, i.e. G = (1 + I) ⋊ (B × B) is an HM∗-group.

2. Proof of Theorem. (⇐) This direction of the proof is immediate.
(⇒) Assume that G is a non-“nilpotent-by-finite” group. Then G has a

strictly descending subnormal series

G = G0 ⊲ G1 ⊲ · · · ⊲ Gm = S,

where S is a non-“nilpotent-by-finite” group with all proper normal subgroups
nilpotent-by-finite. By Lemma 1, Gj/Gj+1 is a Černikov group (j = 0, 1, . . . ,m−
1).

Let z ∈ Gm−1. Then Sz ⊳ Gm−1 and hence S′ ⊳ Gn−1. We denote by
Dm−1 the subgroup of finite index in Gm−1 such that Dm−1/S

′ is the divisible
part of Gm−1/S

′. Then D′

m−1 = S′. Since Dm−1D
y
m−1/S

′ is a Černikov group
for every y ∈ Gm−2 and S′ does not contain a proper S-invariant subgroup of
finite index, we conclude that Dm−1 ⊳ Gm−2. Continuing this process, after a
finite number steps we obtain that G has a normal subgroup D of finite index
with divisible Černikov group D/D′ and D′ = S′. Consequently

D = D1 · . . . · Dn(n ≥ 1),

where Ds/D
′ is a divisible Černikov Sylow ps-subgroup of D/D′ (s = 1, . . . , n)

and ps 6= pl if s 6= l (1 ≤ s, l ≤ n). If Dk is a nilpotent-by-finite subgroup for
some integer k (1 ≤ k ≤ n), then it is nilpotent. This yields that Dm is not
nilpotent-by-finite for some integer m, where 1 ≤ m ≤ n. Then it contains a
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subnormal subgroup T with all proper normal subgroups nilpotent-by-finite. As
above we can prove that T ′ = D′

m = S′. Hence Dm is an HM∗-group with
nilpotent commutator subgroup D′

m. The theorem is proved. �
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