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ABSTRACT. Let a net (11), U ]1\1[) be given in the space Ay with an affine

connectedness I'?, 8> without a torsion . If the covectors %{, are defined such
8 nlJ)rl

B 1 2
that v7v, = 0%, then the affinor a? = 1115va+1215va+- . -—|—v5175a— v o
(6% n

n+1
N

cee— }\)fﬁva is uniquely determinate by the net. Since agag = 49, then af
defines a composition (X, x X,,) in Ay, i.e. the net (111,121, . ]1\)]) defines a
composition.

Special nets which characterize Cartesian, geodesic, Chebyshevian, geodesic-
Chebyshevian and Chebyshevian-geodesic compositions are introduced. Con-
ditions for the coefficients of the connectedness in the parameters of these
special nets are found.

1 2
The following three affinors are considered : a2, b2 = 11151)(1 + gﬁva + -

k41 N 1 2 k k+1
+0P0,— v B0 = = 0P, = vPu, 0P+ 0P, — v BT,
k k+1 N 1 2 k k+1
n n+1 N
— —vﬁva—i— v 8 va—f—--'—i—vﬁva.
n n N

These affinors define a three interrelated compositions and satisfy ab% =

g
)

c bg% =a?, cgag = b7. It is proved that if two of the three interrelated

compositions are Cartesian (Chebyshevian), then the third one is Cartesian
(Chebyshevian) too.

2000 Mathematics Subject Classification: 53Bxx, 53B05.
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1. Preliminary. Let Ay be an affinely connected space without a
torsion, with coefficients of the connectedness I'75- The space Ap assumes a
composition X, X X, of two base manyfolds X,, and X,, (n + m = N) if and
only if there exists an affinor a2, such that agag = 02 [1]. This space will be
denoted Ay (X, X X,,,). Two positions P(X,,), P(X,,) of the base manyfolds pass
through any point of Ax(X, x X,).

Let accept: o, B,v,0,v,... € {1,2,...,N}; i,5,k,p,q,7,8,... € {1,2,...,n};
i3,k P, G7,5,... € {n+1,n+2,....,N}.

We shall consider an affinely connected spaces Ay (X, x X,,) with integrable
structure of the compositions. According to [4] the integrability condition of the
structure is characterized with the equality

(1) agv[aag} — agv[ﬁaz] =0.

For the projecting affinors @ 5, @ 2, defined by the conditions [5]

n 1 m 1
(2) a§:§(6g+ag), ag:§(5g—ag),
the following equalities are fulfilled: a g a 5= a g, a 3 @ 5= a g, a g a 5=
m ﬂ n

a o a §=0.From [2] and [3] it is known:

The composition X,, X X,, is called Cartesian if the positions P(X,,) and P(X,,)
are parallelly translated along any line in the space.

The composition X, x X,, is called geodesic if the positions P(X,,) and P(X,,)
are parallelly translated along P(X,,) and P(X,,), respectively.

The composition X,, x X,, is called Chebyshevian if the positions P(X,) and
P(X,,) are parallelly translated along P(X,,) and P(X,), respectively.

The composition X,, x X, is called g, Ch-composition if the positions P(X,,) and
P(X,,) are parallelly translated along P(X,,) .

The composition X,, x X, is called Ch, g-composition if the positions P(X,,) and
P(X,,) are parallelly translated along P(X,,).

The following propositions are proved in the paper [2]:

The composition X, x X,, is Cartesian if and only if

(3) Vaab = 0.
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The composition X, x X,

(4)

The composition X, x X,

®)

The composition X,, x X,

(6)

The composition X,, x X,,

(7)

According to [4] for an arbitrary vector v® € Ay we have

(o7

where

(8) Vo= g7 e P(X,), VU= g

is geodesic if and only if

ag, Vay + aj Veag = 0.

is Chebyshevian if and only if

V[aag} =0.

is g, Ch-composition if and only if

ad Vyah=0.

is Ch, g-composition if and only if

a g Vea =0

n m n
V=0 007+ ST =V Ot

g

Let N independent fields of directions v T 9.,

2

191

v 7 be given in Ay.They

define the net (211,’3,,]1\)7) The reciprocal covectors ’ga(a = 1,2,...,N) are
defined by the equalities
9) Wy =60 iff 7%, = 67,

e e

As in the paper [6] can be written the following derivative equations

(10) Va zﬁ)"

g

N

B

a U, vava:_Tavcr-
v v

2. Special nets and compositions in A ;. Introduce the following

affinor

(11) ag:?ﬁéa—i—gﬁ%a—i—---—i—vﬁga— v B!
n

n+1
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are uniquely determinated from the net (111,72), el ). According to (9), (11) we

obtain agag = 07, from where it follows that the affinor (11) defines a composition

XXX, in Ay. If the affinor (11) satisfies (1) the structure of the space Ay (X, X
Xp,) it will be integrable.

Definition 1. Any composition (X, x X,,,) generated by the affinor (11),

which satisfies the condition (1), will be called associated with the net (211, U ,]2\1[)

From (2), (9), (11) we find

(12) Qg7 =v" age” =0, g’ =v" a7 =0,
S S S S
from where it follows v® € P(X,), v* € P(Xp).
S S
Taking into account (11), (12) we establish
(13) a 5= 1815, a 5= go‘f)ﬁ, ag= 15)0‘1815 — 2510‘15)5 .

The derivative equations (10) are equivalent to the following four equations

- k o k - s s k s &
vav =Ta V7 +Tq V%, vava:_Tava_Tavm
s s k s k& k %
(14)
k k 5 3k 5 %
Vo V7 =Ta V7 +TaV, VoUs=-TaVs—Ta Vg
5 s k 5 & k %

Definition 2. A net (v Uy v) € An will be called C-net if for any

, T the coefficients from the demvatwe equations (14) satisfy the equalities
?

k,s
k
To="Ta
p

V)

Theorem 1. The composition (X, X X,,) € Ay is Cartesian if and only
if it is associated with a C-net.

Proof. the composition (X, x X,,) € Ay be associated with a C-net.
According to (13), (14), Definition 2 we find

e o’ _k of R
Ve @ 5= Valy70s) = Lay"vs ~ "0s =0,
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3 k 3 3 %
Va ZL ,% = va(%}asﬂ) = Iaga’f)ﬂ — I’Oégav,@'
s k

Thus taking into account again (13) we get Vo a = 0. Now from (3) it follows
that the composition (X,, x X,,,) € Ay is Cartesian.

)

S

Let the composition (X, x X,,) € Ay, associated with the net (111, Ui
be Cartesian. Then (3) will be fulfilled. According to (2) the equality (3)

g

equivalent to V,, a 3 = 0. Applying (13), (14) we obtain

v
N
i

Eall

(15) Vo 69 = Vawds) = Tat"ds — Tat"t
o 8 — ozs B) — Lav Up L a g -
S k kS

Because of the independence of the vectors v® and covectors ¥, from (15) we
(07

) ) k s & k 7 .
obtain consecutively Ta’f)g =0, Tavg = 0 and Ty = To = 0, i.e. the net
s % P s
(v,v,...,v) is Cartesian. O
1’2 N

Theorem 2. If the coordinate net (211,221,,17\)[) € AN(X, X Xpn) is a

C-net, then the coefficients of the connectedness satisfy the conditions

re. =1k, =0.

172
coordinate one. After contraction of the first equality in (10) by U, and taking

Proof. Let the C-net (v,v,...,]’t\)]) € An(X, x X,,) be chosen as a

into account (9) we obtain

v

16 Do Vot =
(16) v

o

IS

k k 7 T
Now according to (16), Definition 2 we find v,V 07 = T = 0, Zavav" = jr”a =
P P s s

bS]

0, from where follow 50(8a’%)” + ngg”) =0, Za(aa?sf’ + ng’g”) = 0. Finally,
taking into account that the C-net (111,121, e ,]1\)7) € An(X, x X,,) is coordinate,
we get FZE:FI‘;‘"‘ =0.

It is easy to prove that if the conditions PZE = I'h,, = 0 are fulfilled in the
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parameters of the coordinate net (11),72), . ,]1\1[) € An(X, x X,), then this net is
C-net. O

Definition 3. A net (11),221,,]1\1[) € An will be called g-net if for any

k,s,k,3 the coefficients from the derivative equations (14) and the affinor ag

satisfy the equalities

o R Kook
(17) Taay+Ts=0, Toay—Ts=0.
S S S S

Theorem 3. The composition (X, x X,,) € An is a g-composition if
and only if it is associated with a g-net.

Proof. According to (2) we can write

n

af Veal +af Veah = (a §—a §Vala 4 —a 2)+(a 5 —a {Va(a §—a ).

Then because of (9), (13), (14) we get

k k k k s
(18)  a§ Voa, +a Vaah = 2(Tq a2 + To)v” U5+ 2(To — Taal)vg v,
s s 'k S S
Let the composition (X, x X,,) € Ay be associated with a g-net. Then taking
into account (17), (18) we obtain (4), i.e. (X, x X,;,) € Ay is a g-composition.
Let the composition (X, x X,,,) € An, associated with the net (111, Uy ,}\J])

be g-composition. According to (4), (18) and the independence of v7 and Uy We
(0%

)
obtain (17) which means that (111,1217 ...,v)is a gnet. O

Theorem 4. If the coordinate net (211, Uy ) € AN (X, x X)) is a g-net,

, U
N
then the coefficients of the connectedness satisfy the conditions TF, = I’% =0.

Proof. Let the g-net (11),72), e ,]1\1[) € An (X, x X;,) be chosen as a coor-

dinate one. According to (16) the equalities (17) accept the form

k k k k
va(éag”—l{‘gyg”)ag = —va(agga—l{‘”yg”), Vg (000 +T5,0" )af = Vs (907 +1',0").
p p p p
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Now taking into account that the g-net (111,121, ey v) € An(X, x X;) is coordi-

nate, we get FEpﬁsfﬁ — I‘Ep’f)g = —I’Ep, I”S“I—JQSJ I’- —’Uﬁ = Fﬁ_ from where we
obtain I‘k —Fk = 0.

It is easy to prove that if the conditions I‘k =17 k - = 0 are fulfilled in the
parameters of the coordinate net (1, Ui - ,N) € AN(Xn X Xm) , then this net is
a g-net. [J

Definition 4. A net (’U Uy U) € An will be called Ch-net if for any

k: S p,r the coefficients from the demvatwe equations (14) satisfy the equalities

T (a0 = i[ a¥p) = 0.

Theorem 5. The composition (X, x X,,) € An is Chebyshevian if and
only if it is associated with a Ch-net.

Proof. According to (13), (14) we find
k p .
(19) Via @ § = T @0Y” = Tialy” = 0.

Let the composition (X,, x X,,) € Ax be associated with a Ch-net. From (19)
taking into account (2) and Definition 3 we get V|, a } =0, i.e. the composition
(Xn % X,,) € Ay is Chebyshevian.

Let the composition (X, x X,,,) € An, associated with the net (111, U ,}\J])

be Chebyshevian. Then (5) will be fulfilled. According to (2) the equality (5) is
equivalent to V[a } = 0. From (19) because of the independence of the vectors

g we obtain %”[avm = Z”[avm = 0, which means that (71), Ui ,]1\1[) is a Ch-net. O

Theorem 6. If the coordinate net (111,72), e ,]7\)7) € An(X, x X,,,) is a Ch-

net, then the coefficients of the connectedness satisfy the conditions I’;S = Flgﬁ =0.

Proof. Let the Ch-net (211,2217,]1\17) € An(X, x X,,) be chosen as
a coordinate one. According to (16) and Definition 3 we find ZUV[ v"ijﬁ]:o,

vav[av gﬁ] = 0, from where follow 1]30(8 g 74+I7,v ”)vﬁ va(agv +I'G,v p”)ga =0,
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50(8av0 + I‘gyv”)ijﬁ - 50(8578)" + ngzsz”)ija = 0. Taking into account that the Ch-

S S
net (11),121, e ,]1\1[) € An(X,, x X,,) is coordinate, we get
(20) Tk U5 —Th 04 =0, T, 05— I, 04 = 0.

Supposing in (20) o = s, = P consecutively and granting the independence of
Vg, we find I =T* = 0.

It is easy to prove that if the conditions F;S = I”’S‘“'TJ = 0 are fulfilled in the
parameters of the coordinate net (111, Uy ,]’L\)]) € An(X, x Xy,) , then this net is

a Ch-net. O

Definition 5. A net (211,121,,12\1[) € An will be called g,Ch-net if for

any s,k the coefficients from the derivative equations (14) satisfy the equalities
Foda_f.Ba_g
Ea /@ - o a ﬁ - Y

Theorem 7. The composition (X, x X,) € Ay is a g, Ch-composition
if and only if it is associated with a g, Ch-net.

Proof. According to (6), (13), (14) we find

v

v

gv.

s

(21) G5V, ah="Ty aC v R

SN ]

o [
« «

o Mo
>
o

Let the composition (X,, X X,,,) € Ay be associated with a g, Ch-net. From (21)
because of (2) and Definition 4 we get a 9 V, a h=0,1e (X, xX;)€Ayis
a g, C'h-composition.
Let the composition (X, x X,,,) € An, associated with the net (111, Uy ,J?\J[)
be g, Ch-composition. According to (6), (21) and the independence of v@ and U,
(07

we obtain @ © V, a Y = 0, which means that (v,v,...,v) is a g,Ch-net. O
a B 12 N

Theorem 8. If the coordinate net (’i), v, ) € An(XpxXp,) is a g,Ch-

)
2 N
net, then the coefficients of the connectedness satisfy the conditions T'F, = I‘fg = 0.
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Proof. Let the g, Ch-net (111,121, . ,11\)[) € An(X, x X,,) be chosen as a

coordinate one. According to (13) the equalities in Definition 4 accept the form
k
Ta 5ﬁ v = %a 5ﬁ v* = 0. Now using (16) we establish
s p k p
S o o NP o _k o o P«
Vg (0av” + T3, 0" )vg v = 05 (0uv7 + TG, 0" )vg v* = 0.
% % P s s P

Taking into account that the g, Ch-net (111, Ui ,]1\17) € An(X,, xX,,) is coordinate,

we get Tk, =Tk =0. B
It is easy to prove that if the conditions I'*, = T'*. = 0 are fulfilled in the
parameters of the coordinate net (111, Ui ,]1\)7) € An(X,, x X;,) , then this net is

a g,Ch-net. 0O

Definition 6. A net (211,221,,]1\17) € An will be called Ch,g-net if for

any s,k the coefficients from the derivative equations (14) satisfy the equalities
S m E m
%a a g:za a %‘20.

The proof of the next two theorems is essentially the same as the proof
of the Theorems 7, 8.

Theorem 9. The composition (X, X X,,) € Ay is a Ch, g-composition
if and only if it is associated with a C'h, g-net.

Theorem 10. If the coordinate net (71),12),,]1\1[) € An(X, x Xp) is a

Ch,g-net, then the coefficients of the connectedness satisfy the conditions I‘Eﬁ =
It_=o.
P

Of cause if in the parameters of the coordinate net

(g),g,...,]z\ff) € AN(X,, x Xpn)
the equalities I‘Eﬁ =Tk 5 = 0. are fulfilled, then this net is a Ch, g-net.
The characteristics of the spaces in the parameters of special coordinate
nets of the spaces Ay (X, X X,,) which contain special compositions (Theorems 2,
4, 6, 8) coincide with the characteristics in the adapted with these compositions
coordinate systems found in [2].
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3. Three interrelated compositions generated by a net in
Apn. Let the net (111,121, . ,]1\17) be given in Ay . Consider the affinors (11) and

1 2 k N
bg:g)ﬂva'i‘gﬁva'i_""i_g'@va_kilﬁ Ot_”'_}\)/.ﬂva7 k<n7
1 2 k k+1
R T A R ST L
1 2 k k+1 n
N
+ v ﬂn$1a+...+yﬂva’
n+1 N

uniquely determinate from the net (111, Ui ,]1\17) From (9), (11), (22) follow

(23) alby =%, bich=al, chaf=1"

(24) abaf =03, oG =107, k=7

According to (24) the affinors aa, ba, ca define compositions which we will denote
(X0 x X))y (Yo xYn), (Zy, X Zy), respectively . These three compositions will
be called three interrelated compositions The projecting affinors of (Y, x Y,)

and (Z, X Z,) will be denoted byb o b Bandc? o ¢ B w, where k+p=r-+s=
n+m = N. Because of (22) we can write

k p ] 3
(25) bg:vﬂvav bg:yﬁ{)a7 gg:vﬂ{]av ég:yﬁ%a7
i i J j

where i = 1,2,....k ; i = k+1L,k+2,...,N; j = 1,2,....,k,n+ 1,n+
2,...,N: j=k+1,k+2,...,n
k k P

According to (13), (25) we obtain ab = b§+é§, b= bg—i—gg, =284
Hence

p
(26) Vvl
Now from (26) follow

Proposition 1. If two of the three interrelated compositions are Carte-
sitan, then the third one is Cartesian, too.

Proposition 2. If two of the three interrelated compositions are Cheby-
shevian, then the third one is Chebyshevian, too.
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Definition 7. A net (211,12),,17\)[) € An will be called C3-net if the
compositions, generated by the affinors (11) and (22) are Cartesian.

According to Theorem 1 the derivative equations (10) for the C3-net
accept the form

Va0° Tv ,p=12... 0k i=12 ...k,
P p i
(27) Vav T Top=k+1k+2,....n;i=k+1,k+2,...,n,
P p 7
V¥ T
p P

.o p=n+1,n+2,...,N;i=n+1n+2,...,N.
From Theorem 2 it follows

Corollary 1. If the coordinate net (111,121, .. ,17\)[) € Ay is a C3-net, then
the coefficients of the connectedness satisfy the conditions r’, =0 for any o and
(B=1,2,....,k; a=k+1,k+2,...,N), (B=n+1,n+2,...,N; a=1,2,...,n),
B=k+1,k+2,....n, a=1,2,...;k,n+1,n+2,...,N).

Definition 8. A net (111,121, ,]1\17) € An will be called Ch3-net if the
compositions, generated by the affinors (11) and (22) are Chebyshevian.

From Theorem 6 it follows

Corollary 2. If the coordinate net (111,121, ... ,]1\17) € Ay is a Ch3-net, then

the coefficients of the connectedness satisfy the conditions T’ 30 =0 for (o, =
1,2,...,n;o=n+1n+2,....N), (a,=k+1,k+2,....N;0=1,2,...,k),
(o, 6=1,2,...;k,n+1,n+2,...,N,o=k+1,k+2,...,n).

Example. Let the net (v,v,v,v) be given in the space A4 without torsion.

v, 0,0,

1727374

1 2 3 4 1 2

Obviously the affinors ag = ’Ll)ﬁva + gﬁva + gﬁva — ’Zﬁ Vs bg = ’Ll)ﬂva + gﬂva —
3 4 1 2 3 4

Py, — ’Zﬁ Ve, e g)ﬁva + gﬁva — gﬂva + ’Zﬂ Vo, satisfy (23), (24). If the

3
net (v,v,v,v) is a C3-net, then the derivative equations (27) accept the form

172 3 4
2 1 2 3 4
Vat? = Tov? V7, Vov7 = Tav° V7 Vou? =Tav7 , Vauo = T0°
from where it follows that the fields of directions g", and a}", are absolutely

parallel.
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