Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

COMPOSITIONS, GENERATED BY SPECIAL NETS IN AFFINELY CONNECTED SPACES

Georgi Zlatanov

Communicated by J.-P. Françoise

Abstract. Let a net $(\underset{1}{v}, \underset{2}{v}, \ldots \underset{N}{v})$ be given in the space A_{N} with an affine connectedness $\Gamma_{\alpha \beta}^{\sigma}$, without a torsion. If the covectors $\stackrel{\alpha}{v}_{\sigma}$ are defined such that $v_{\alpha}^{\sigma^{\beta}} v_{\sigma}=\delta_{\alpha}^{\beta}$, then the affinor $a_{\alpha}^{\beta}=v_{1}^{\beta} v_{\alpha}^{1}+v_{2}^{\beta} \stackrel{v}{v}_{\alpha}+\cdots+v_{n}^{\beta^{n}} v_{\alpha}-\underset{n+1}{v}{ }^{\beta}{ }^{n+1}{ }_{\alpha}-$ $\cdots-\underset{N}{v^{\beta}} v_{\alpha}^{N}$ is uniquely determinate by the net. Since $a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$, then a_{α}^{β} defines a composition $\left(X_{n} \times X_{m}\right)$ in A_{N}, i.e. the net $(\underset{1}{v}, \underset{2}{v}, \ldots \underset{N}{v})$ defines a composition.
Special nets which characterize Cartesian, geodesic, Chebyshevian, geodesicChebyshevian and Chebyshevian-geodesic compositions are introduced. Conditions for the coefficients of the connectedness in the parameters of these special nets are found.
The following three affinors are considered : $a_{\alpha}^{\beta}, b_{\alpha}^{\beta}=v_{1}^{\beta} v_{\alpha}^{1}+v_{2}^{\beta} v_{\alpha}^{2}+\cdots$ $+v_{k}^{\beta} v_{\alpha}^{k}-v_{k+1}^{v}{ }^{\beta} \stackrel{k+1}{v}{ }_{\alpha}-\cdots-\underset{N}{v^{\beta}} v_{\alpha}^{N}, c_{\alpha}^{\beta}=v_{1}^{\beta} v_{\alpha}^{1}+v_{2}^{\beta} v_{\alpha}^{2}+\cdots+v_{k}^{\beta} v_{\alpha}^{k}-v_{k+1}{ }^{\beta}{ }^{k+1}{ }_{v}{ }_{\alpha}$ $-\cdots-v_{n}^{\beta} v_{\alpha}+\underset{n+1}{v}{ }^{\beta} \stackrel{n+1}{v}{ }_{\alpha}+\cdots+{\underset{N}{v}}^{\beta}{ }_{v}^{N}{ }_{\alpha}$.
These affinors define a three interrelated compositions and satisfy $a_{\alpha}^{\beta} b_{\beta}^{\sigma}=$ $c_{\alpha}^{\sigma}, \quad b_{\alpha}^{\beta} c_{\beta}^{\sigma}=a_{\alpha}^{\sigma}, \quad c_{\alpha}^{\beta} a_{\beta}^{\sigma}=b_{\alpha}^{\sigma}$. It is proved that if two of the three interrelated compositions are Cartesian (Chebyshevian), then the third one is Cartesian (Chebyshevian) too.

2000 Mathematics Subject Classification: 53Bxx, 53B05.
Key words: affinely connected space, net, composition, Chebyshevian, Cartesian, geodesic compositions.

1. Preliminary. Let A_{N} be an affinely connected space without a torsion, with coefficients of the connectedness $\Gamma_{\alpha \beta}^{\sigma}$. The space A_{N} assumes a composition $X_{n} \times X_{m}$ of two base manyfolds X_{n} and $X_{m}(n+m=N)$ if and only if there exists an affinor a_{α}^{β}, such that $a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}[1]$. This space will be denoted $A_{N}\left(X_{n} \times X_{m}\right)$. Two positions $P\left(X_{n}\right), P\left(X_{m}\right)$ of the base manyfolds pass through any point of $A_{N}\left(X_{n} \times X_{m}\right)$.
Let accept: $\alpha, \beta, \gamma, \sigma, \nu, \ldots \in\{1,2, \ldots, N\} ; i, j, k, p, q, r, s, \ldots \in\{1,2, \ldots, n\}$;
$\bar{i}, \bar{j}, \bar{k}, \bar{p}, \bar{q}, \bar{r}, \bar{s}, \ldots \in\{n+1, n+2, \ldots, N\}$.
We shall consider an affinely connected spaces $A_{N}\left(X_{n} \times X_{m}\right)$ with integrable structure of the compositions. According to [4] the integrability condition of the structure is characterized with the equality

$$
\begin{equation*}
a_{\beta}^{\sigma} \nabla_{[\alpha} a_{\sigma]}^{\nu}-a_{\alpha}^{\sigma} \nabla_{[\beta} a_{\sigma]}^{\nu}=0 \tag{1}
\end{equation*}
$$

For the projecting affinors $\stackrel{n}{a} \stackrel{\beta}{\alpha}, \underset{a}{a} \underset{\alpha}{\beta}$, defined by the conditions [5]

$$
\begin{equation*}
\stackrel{n}{a} \stackrel{\beta}{\alpha}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right), \quad \stackrel{m}{a} \underset{\alpha}{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right), \tag{2}
\end{equation*}
$$

the following equalities are fulfilled: $\stackrel{n}{a} \underset{\alpha}{\beta} \stackrel{n}{a}{ }_{\beta}^{\sigma}=\stackrel{n}{a}{ }_{\alpha}^{\sigma}, \quad \stackrel{m}{a}{ }_{\alpha}^{\beta}{ }_{\alpha}^{m} \underset{\beta}{\sigma}=\stackrel{m}{a}{ }_{\alpha}^{\sigma}, \quad \stackrel{n}{a}{ }_{\alpha}^{\beta}{ }_{\alpha}^{m} \underset{\beta}{\sigma}=$ ${ }_{a}^{m}{\underset{\alpha}{\beta}}_{\alpha}^{a}{ }_{\beta}^{\sigma}=0$. From [2] and [3] it is known:
The composition $X_{n} \times X_{m}$ is called Cartesian if the positions $P\left(X_{m}\right)$ and $P\left(X_{n}\right)$ are parallelly translated along any line in the space.
The composition $X_{n} \times X_{m}$ is called geodesic if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$, respectively.
The composition $X_{n} \times X_{m}$ is called Chebyshevian if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along $P\left(X_{m}\right)$ and $P\left(X_{n}\right)$, respectively.
The composition $X_{n} \times X_{m}$ is called $g, C h$-composition if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along $P\left(X_{n}\right)$.
The composition $X_{n} \times X_{m}$ is called $C h, g$-composition if the positions $P\left(X_{n}\right)$ and $P\left(X_{m}\right)$ are parallelly translated along $P\left(X_{m}\right)$.
The following propositions are proved in the paper [2]:
The composition $X_{n} \times X_{m}$ is Cartesian if and only if

$$
\begin{equation*}
\nabla_{\alpha} a_{\beta}^{\sigma}=0 \tag{3}
\end{equation*}
$$

The composition $X_{n} \times X_{m}$ is geodesic if and only if

$$
\begin{equation*}
a_{\alpha}^{\sigma} \nabla_{\beta} a_{\sigma}^{\nu}+a_{\beta}^{\sigma} \nabla_{\sigma} a_{\alpha}^{\nu}=0 \tag{4}
\end{equation*}
$$

The composition $X_{n} \times X_{m}$ is Chebyshevian if and only if

$$
\begin{equation*}
\nabla_{[\alpha} a_{\beta]}^{\sigma}=0 \tag{5}
\end{equation*}
$$

The composition $X_{n} \times X_{m}$ is $g, C h$-composition if and only if

$$
\begin{equation*}
\stackrel{n}{a}{ }_{\alpha}^{\sigma} \nabla_{\sigma} \stackrel{n}{a}{ }_{\beta}^{\nu}=0 . \tag{6}
\end{equation*}
$$

The composition $X_{n} \times X_{m}$ is $C h, g$-composition if and only if

$$
\begin{equation*}
\stackrel{m}{a} \underset{\alpha}{\sigma} \nabla_{\sigma} \stackrel{m}{a}{ }_{\beta}^{\nu}=0 . \tag{7}
\end{equation*}
$$

According to [4] for an arbitrary vector $v^{\alpha} \in A_{N}$ we have

$$
v^{\alpha}=\stackrel{n}{a}{\underset{\sigma}{\alpha} v^{\sigma}+\stackrel{m}{a}{\underset{\sigma}{\alpha}}_{\alpha}^{\alpha} v^{\sigma}=\stackrel{n}{V}}^{\alpha}+\stackrel{m}{V}{ }^{\alpha}
$$

where

$$
\begin{equation*}
\stackrel{n}{V}^{\alpha}=\stackrel{n}{a}{\underset{\sigma}{\alpha} v^{\sigma} \in P\left(X_{n}\right), \stackrel{m}{V} \alpha=\stackrel{m}{a}{\underset{\sigma}{\alpha}}_{\alpha}^{\alpha} v^{\sigma} \in P\left(X_{m}\right)}^{\alpha} \tag{8}
\end{equation*}
$$

Let N independent fields of directions $\underset{1}{v}{ }^{\sigma},{\underset{2}{v}}_{v}^{\sigma}, \ldots,{ }_{N}^{v}{ }^{\sigma}$ be given in A_{N}. They define the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$. The reciprocal covectors ${\underset{v}{v}}_{\sigma}^{\alpha}(\alpha=1,2, \ldots, N)$ are defined by the equalities

$$
\begin{equation*}
v_{\alpha}^{\sigma} \stackrel{v}{\sigma}_{\beta}^{\beta}=\delta_{\alpha}^{\beta} \text { iff } \quad v_{\alpha}^{\sigma} v_{\nu}^{\alpha}=\delta_{\nu}^{\sigma} \tag{9}
\end{equation*}
$$

As in the paper [6] can be written the following derivative equations
2. Special nets and compositions in $\boldsymbol{A}_{\boldsymbol{N}}$. Introduce the following affinor

$$
\begin{equation*}
a_{\alpha}^{\beta}=v_{1}^{\beta} v_{\alpha}^{1}+v_{2}^{\beta} \stackrel{v}{\alpha}_{\alpha}^{2}+\cdots+v_{n}^{\beta} \stackrel{n}{\alpha}_{\alpha}^{n}-\underset{n+1}{v} \stackrel{n+1}{v}_{\alpha}-\cdots-v_{N}^{v^{\beta}} \stackrel{N}{v}_{\alpha}^{N}, \tag{11}
\end{equation*}
$$

are uniquely determinated from the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$. According to (9), (11) we obtain $a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$, from where it follows that the affinor (11) defines a composition $X_{n} \times X_{m}$ in A_{N}. If the affinor (11) satisfies (1) the structure of the space $A_{N}\left(X_{n} \times\right.$ X_{m}) it will be integrable.

Definition 1. Any composition $\left(X_{n} \times X_{m}\right)$ generated by the affinor (11), which satisfies the condition (1), will be called associated with the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$.

From (2), (9), (11) we find

$$
\begin{equation*}
\stackrel{n}{a} \underset{\sigma}{\alpha} v_{s}^{\sigma}=v_{s}^{\alpha}, \quad \stackrel{n}{a} \underset{\sigma}{\alpha} \frac{v^{\sigma}}{\sigma}=0, \quad \stackrel{m}{a} \underset{\sigma}{\alpha} \frac{v^{\sigma}}{\sigma}=\frac{v^{\alpha}}{\alpha}, \quad \stackrel{m}{a} \underset{\sigma}{\alpha} v_{s}^{\sigma}=0 \tag{12}
\end{equation*}
$$

from where it follows $v_{s}^{\alpha} \in P\left(X_{n}\right), \quad \frac{v^{\alpha}}{s} \in P\left(X_{m}\right)$.
Taking into account (11), (12) we establish

$$
\begin{equation*}
\stackrel{n}{a}{ }_{\beta}^{\alpha}=v_{s}^{\alpha} \stackrel{s}{v}_{\beta}, \quad{ }_{a}^{m}{ }_{\beta}^{\alpha}=\frac{v}{s}^{\alpha} \stackrel{\bar{s}}{\beta} \beta, \quad a{ }_{\beta}^{\alpha}=v_{s}^{\alpha} v_{\beta}^{s}-v_{\bar{s}}^{\alpha} \stackrel{\stackrel{\bar{s}}{v}}{\beta} \tag{13}
\end{equation*}
$$

The derivative equations (10) are equivalent to the following four equations

Definition 2. $A \operatorname{net}(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called C-net if for any k, s, \bar{p}, \bar{r} the coefficients from the derivative equations (14) satisfy the equalities $\stackrel{k}{\underset{p}{T}} \alpha=\stackrel{\bar{r}}{\underset{s}{*}} \alpha$.

Theorem 1. The composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is Cartesian if and only if it is associated with a C-net.

Proof. the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ be associated with a C-net. According to (13), (14), Definition 2 we find

$$
\nabla_{\alpha} \stackrel{n}{a}{\underset{\beta}{\sigma}}_{\beta}^{\sigma} \nabla_{\alpha}\left(v_{s}^{\sigma} \stackrel{\sigma}{v}_{\beta}^{s}\right)=\stackrel{k}{T} \alpha_{s} v_{k}^{\sigma} \stackrel{s}{v}_{\beta}-\stackrel{s}{T} \alpha_{k} v_{s}^{\sigma} v_{\beta}^{k}=0
$$

Thus taking into account again (13) we get $\nabla_{\alpha} a_{\beta}^{\sigma}=0$. Now from (3) it follows that the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is Cartesian.

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$, associated with the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be Cartesian. Then (3) will be fulfilled. According to (2) the equality (3) is equivalent to $\nabla_{\alpha} \stackrel{n}{a}{ }_{\beta}^{\sigma}=0$. Applying (13), (14) we obtain

Because of the independence of the vectors $\underset{\alpha}{v_{\alpha}^{\sigma}}$ and covectors $\stackrel{\alpha}{v_{\sigma}}$ from (15) we
 $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ is Cartesian.

Theorem 2. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is a C-net, then the coefficients of the connectedness satisfy the conditions

$$
\Gamma_{\alpha \bar{k}}^{s}=\Gamma_{\alpha m}^{\bar{p}}=0 .
$$

Proof. Let the C-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ be chosen as a coordinate one. After contraction of the first equality in (10) by $\stackrel{\nu}{v}_{\sigma}$ and taking into account (9) we obtain

$$
\begin{equation*}
\stackrel{\nu}{v}_{\sigma} \nabla_{\alpha} v_{\beta}^{\sigma}=\stackrel{\nu}{\beta}_{\beta}^{\nu} \alpha . \tag{16}
\end{equation*}
$$

Now according to (16), Definition 2 we find $\stackrel{k}{v}_{\sigma} \nabla_{\alpha}{\underset{\bar{p}}{ }}_{\sigma}^{\sigma}=\stackrel{k}{\underset{p}{T}}{ }_{\alpha}=0, \stackrel{\bar{r}}{\sigma}{ }_{\sigma} \nabla_{\alpha} v_{s}^{\sigma}=\stackrel{\bar{r}}{T_{s}}{ }_{\alpha}=$ 0 , from where follow $\stackrel{k}{v}_{\sigma}\left(\partial_{\alpha} \frac{v_{\bar{p}}^{\sigma}}{}+\Gamma_{\alpha \nu}^{\sigma} \frac{v^{\nu}}{\nu}\right)=0, \stackrel{\bar{r}}{v}_{\sigma}\left(\partial_{\alpha} v_{s}^{\sigma}+\Gamma_{\alpha \nu}^{\sigma} v_{s}^{\nu}\right)=0$. Finally, taking into account that the C-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is coordinate, we get $\Gamma_{\alpha \bar{k}}^{s}=\Gamma_{\alpha m}^{\bar{p}}=0$.
It is easy to prove that if the conditions $\Gamma_{\alpha \bar{k}}^{s}=\Gamma_{\alpha m}^{\bar{p}}=0$ are fulfilled in the
parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$, then this net is C-net.

Definition 3. $A \operatorname{net}(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called g-net if for any k, s, \bar{k}, \bar{s} the coefficients from the derivative equations (14) and the affinor a_{α}^{β} satisfy the equalities

$$
\begin{equation*}
\stackrel{\bar{k}}{\stackrel{\rightharpoonup}{s}_{\alpha}} a_{\sigma}^{\alpha}+\stackrel{\bar{k}}{T_{s}}{ }^{-}=0, \quad \stackrel{k}{\frac{k}{s}} \alpha a_{\sigma}^{\alpha}-\stackrel{k}{\frac{T}{s}} \sigma=0 \tag{17}
\end{equation*}
$$

Theorem 3. The composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is a g-composition if and only if it is associated with a g-net.

Proof. According to (2) we can write
$a_{\beta}^{\sigma} \nabla_{\alpha} a_{\sigma}^{\nu}+a_{\alpha}^{\sigma} \nabla_{\sigma} a_{\beta}^{\nu}=(\stackrel{n}{a} \underset{\beta}{\sigma}-\stackrel{m}{a} \underset{\beta}{\sigma}) \nabla_{\alpha}(\stackrel{n}{a} \underset{\sigma}{\nu}-\stackrel{m}{a} \underset{\sigma}{\nu})+(\stackrel{n}{a} \underset{\alpha}{\sigma}-\stackrel{m}{a} \underset{\alpha}{\sigma}) \nabla_{\sigma}\left(\stackrel{n}{a}{ }_{\beta}^{\nu}-\stackrel{m}{a}{\underset{\beta}{\nu}}_{\nu}\right)$.
Then because of $(9),(13),(14)$ we get

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ be associated with a g-net. Then taking into account (17), (18) we obtain (4), i.e. $\left(X_{n} \times X_{m}\right) \in A_{N}$ is a g-composition.

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$, associated with the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be g-composition. According to (4), (18) and the independence of v_{α}^{σ} and $\stackrel{\alpha}{v}_{\sigma}$ we obtain (17) which means that $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ is a g-net.

Theorem 4. If the coordinate net $\underset{1}{v} \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is a g-net, then the coefficients of the connectedness satisfy the conditions $\Gamma_{r s}^{\bar{k}}=\Gamma_{\overline{r s}}^{k}=0$.

Proof. Let the g-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ be chosen as a coordinate one. According to (16) the equalities (17) accept the form

$$
\stackrel{\bar{k}}{v}_{\sigma}\left(\partial_{\alpha} v_{p}^{\sigma}+\Gamma_{\alpha \nu}^{\sigma} v_{p}^{\nu}\right) a_{\beta}^{\alpha}=-\stackrel{\bar{k}}{v_{\sigma}}\left(\partial_{\beta} v_{p}^{\sigma}+\Gamma_{\beta \nu}^{\sigma} v_{p}^{\nu}\right), \stackrel{k}{v}_{\sigma}\left(\partial_{\alpha} \frac{v_{\bar{p}}^{\sigma}}{\sigma}+\Gamma_{\alpha \nu}^{\sigma} \bar{v}_{\bar{p}}^{\nu}\right) a_{\beta}^{\alpha}=\stackrel{k}{v}_{\sigma}\left(\partial_{\beta} \frac{v}{p}_{\sigma}^{\sigma}+\Gamma_{\beta \nu}^{\sigma} \nu_{\bar{p}}^{\nu}\right) .
$$

Now taking into account that the g-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is coordinate, we get $\Gamma_{s p}^{\bar{k}} \stackrel{s}{v}_{\beta}-\Gamma_{\bar{s} p}^{\bar{k}} \stackrel{\bar{v}}{v}^{s}=-\Gamma_{\beta p}^{\bar{k}}, \Gamma_{s \bar{p}}^{k} \stackrel{s}{v}_{\beta}-\Gamma_{\bar{s}}^{k} \stackrel{\bar{p}}{v}_{\beta}=\Gamma_{\beta \bar{p}}^{k}$, from where we obtain $\Gamma_{r s}^{\bar{k}}=\Gamma_{r s}^{k}=0$.

It is easy to prove that if the conditions $\Gamma_{r s}^{\bar{k}}=\Gamma_{\bar{r}}^{k}{ }_{\bar{s}}=0$ are fulfilled in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$, then this net is a g-net.

Definition 4. A net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called Ch-net if for any k, s, \bar{p}, \bar{r} the coefficients from the derivative equations (14) satisfy the equalities

Theorem 5. The composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is Chebyshevian if and only if it is associated with a Ch-net.

Proof. According to (13), (14) we find

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ be associated with a $C h$-net. From (19) taking into account (2) and Definition 3 we get $\nabla_{[\alpha} a_{\beta]}^{\sigma}=0$, i.e. the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is Chebyshevian.

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$, associated with the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be Chebyshevian. Then (5) will be fulfilled. According to (2) the equality (5) is equivalent to $\nabla_{[\alpha} \stackrel{n}{a}{ }_{\beta]}^{\sigma}=0$. From (19) because of the independence of the vectors

Theorem 6. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is a Chnet, then the coefficients of the connectedness satisfy the conditions $\Gamma_{\bar{p} s}^{\bar{r}}=\Gamma_{s \bar{p}}^{k}=0$.

Proof. Let the $C h$-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ be chosen as a coordinate one. According to (16) and Definition 3 we find $\stackrel{\bar{v}}{\sigma}^{\nabla_{[\alpha}} \nabla_{s} v^{\sigma} v_{\beta]}^{s}=0$,

$\stackrel{\bar{v}}{\sigma}^{v^{\prime}}\left(\partial_{\alpha} v_{s}^{\sigma}+\Gamma_{\alpha \nu}^{\sigma} v_{s}^{\nu}\right) v_{\beta}^{s}-\stackrel{\bar{v}}{\sigma}\left(\partial_{\beta} v_{s}^{\sigma}+\Gamma_{\beta \nu}^{\sigma} v_{s}^{\nu}\right) v_{\alpha}^{s}=0$. Taking into account that the $C h-$ net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is coordinate, we get

$$
\begin{equation*}
\Gamma_{\alpha \bar{p}}^{k} \stackrel{\bar{p}}{v}_{\beta}-\Gamma_{\beta \bar{p}}^{k} \stackrel{\bar{p}}{v}_{\alpha}=0, \quad \Gamma_{\alpha s}^{\bar{p}} \stackrel{s}{v}_{\beta}-\Gamma_{\beta s}^{\bar{r}} \stackrel{s}{v}_{\alpha}=0 \tag{20}
\end{equation*}
$$

Supposing in (20) $\alpha=s, \alpha=\bar{p}$ consecutively and granting the independence of $\stackrel{\sigma}{v}_{\beta}$, we find $\Gamma_{\bar{p} s}^{\bar{r}}=\Gamma_{s \bar{p}}^{k}=0$.
It is easy to prove that if the conditions $\Gamma_{\bar{p} s}^{\bar{r}}=\Gamma_{s \bar{p}}^{k}=0$ are fulfilled in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$, then this net is a $C h$-net.

Definition 5. A net $\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called g, Ch-net if for any s, \bar{k} the coefficients from the derivative equations (14) satisfy the equalities $\frac{\stackrel{s}{T}}{\bar{k}} \alpha \stackrel{n}{a} \underset{\beta}{\alpha}=\stackrel{\bar{k}}{T_{\alpha}} \alpha \stackrel{n}{a} \underset{\beta}{\alpha}=0$.

Theorem 7. The composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is a g, Ch-composition if and only if it is associated with a $g, C h-n e t$.

Proof. According to (6), (13), (14) we find

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ be associated with a $g, C h$-net. From (21) because of (2) and Definition 4 we get $\stackrel{n}{a} \underset{\alpha}{\sigma} \nabla_{\sigma} \stackrel{n}{a}{ }_{\beta}^{\nu}=0$, i.e. $\left(X_{n} \times X_{m}\right) \in A_{N}$ is a $g, C h$-composition.

Let the composition $\left(X_{n} \times X_{m}\right) \in A_{N}$, associated with the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be $g, C h$-composition. According to (6), (21) and the independence of v_{α}^{σ} and $\stackrel{\alpha}{v_{\sigma}}$ we obtain $\stackrel{n}{a} \underset{\alpha}{\sigma} \nabla_{\sigma} \stackrel{n}{a} \underset{\beta}{\nu}=0$, which means that $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ is a $g, C h$-net.

Theorem 8. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is a g, Chnet, then the coefficients of the connectedness satisfy the conditions $\Gamma_{r s}^{\bar{k}}=\Gamma_{r \bar{s}}^{k}=0$.

Proof. Let the $g, C h$-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ be chosen as a coordinate one. According to (13) the equalities in Definition 4 accept the form

Taking into account that the $g, C h$-net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is coordinate, we get $\Gamma_{r s}^{\bar{k}}=\Gamma_{r \bar{s}}^{k}=0$.
It is easy to prove that if the conditions $\Gamma_{r s}^{\bar{k}}=\Gamma_{r \bar{s}}^{k}=0$ are fulfilled in the parameters of the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$, then this net is a $g, C h$-net.

Definition 6. A net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called $C h, g$-net if for any s, \bar{k} the coefficients from the derivative equations (14) satisfy the equalities $\stackrel{\stackrel{s}{T}}{\stackrel{T}{k}} \alpha \stackrel{m}{a} \underset{\beta}{\alpha}=\stackrel{\bar{k}}{T_{s}} \alpha \stackrel{m}{a} \underset{\beta}{\alpha}=0$.

The proof of the next two theorems is essentially the same as the proof of the Theorems 7, 8 .

Theorem 9. The composition $\left(X_{n} \times X_{m}\right) \in A_{N}$ is a Ch,g-composition if and only if it is associated with a Ch,g-net.

Theorem 10. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)$ is a Ch,g-net, then the coefficients of the connectedness satisfy the conditions $\Gamma_{s \bar{p}}^{\bar{k}}=$ $\Gamma_{\bar{s}}^{k}{ }_{\bar{p}}=0$.

Of cause if in the parameters of the coordinate net

$$
(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}\left(X_{n} \times X_{m}\right)
$$

the equalities $\Gamma_{s \bar{p}}^{\bar{k}}=\Gamma_{\bar{s}}^{k}{ }_{\bar{p}}=0$. are fulfilled, then this net is a $C h, g$-net.
The characteristics of the spaces in the parameters of special coordinate nets of the spaces $A_{N}\left(X_{n} \times X_{m}\right)$ which contain special compositions (Theorems 2, $4,6,8)$ coincide with the characteristics in the adapted with these compositions coordinate systems found in [2].

3. Three interrelated compositions generated by a net in

$\boldsymbol{A}_{\boldsymbol{N}}$. Let the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be given in A_{N}. Consider the affinors (11) and

$$
\begin{align*}
& b_{\alpha}^{\beta}=v_{1}^{v^{\beta}} v_{\alpha}+v_{2}^{v^{\beta}} \stackrel{v}{\alpha}+\cdots+v_{k}^{\beta} v_{\alpha}-\underset{k+1}{v}{ }^{\beta} \stackrel{k+1}{v}{ }_{\alpha}-\cdots-{\underset{N}{v}}^{\beta}{ }^{N}{ }_{\alpha}, \quad k<n, \\
& c_{\alpha}^{\beta}=v_{1}^{\beta} v_{\alpha}^{1}+v_{2}^{\beta} \stackrel{v}{\alpha}_{\alpha}+\cdots+v_{k}^{\beta}{ }_{v}^{k}-\underset{k+1}{v}{ }^{\beta} \stackrel{k+1}{v}{ }_{\alpha}-\cdots-v_{n}^{\beta}{ }_{\alpha}^{n}+ \tag{22}\\
& +\underset{n+1}{v} \beta^{n+1}{ }_{\alpha}+\cdots+{\underset{N}{v}}^{\beta}{ }^{N}{ }_{\alpha},
\end{align*}
$$

uniquely determinate from the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$. From (9), (11), (22) follow

$$
\begin{align*}
& a_{\alpha}^{\beta} b_{\beta}^{\sigma}=c_{\alpha}^{\sigma}, \quad b_{\alpha}^{\beta} c_{\beta}^{\sigma}=a_{\alpha}^{\sigma}, \quad c_{\alpha}^{\beta} a_{\beta}^{\sigma}=b_{\alpha}^{\sigma} \tag{23}\\
& a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}, \quad b_{\alpha}^{\beta} b_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}, \quad c_{\alpha}^{\beta} c_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma} \tag{24}
\end{align*}
$$

According to (24) the affinors $a_{\alpha}^{\beta}, b_{\alpha}^{\beta}, c_{\alpha}^{\beta}$ define compositions which we will denote $\left(X_{n} \times X_{m}\right),\left(Y_{n} \times Y_{m}\right),\left(Z_{n} \times Z_{m}\right)$, respectively. These three compositions will be called three interrelated compositions. The projecting affinors of $\left(Y_{n} \times Y_{m}\right)$ and $\left(Z_{n} \times Z_{m}\right)$ will be denoted by $\stackrel{k}{b} \stackrel{\beta}{\alpha}, \stackrel{p}{b} \underset{\alpha}{\beta}$ and $\stackrel{r}{c}{ }_{\alpha}^{\beta}, \stackrel{s}{c}{ }_{\alpha}^{\beta}$, where $k+p=r+s=$ $n+m=N$. Because of (22) we can write

$$
\begin{equation*}
\stackrel{k}{b}_{\alpha}^{\beta}=v_{i}^{\beta} \stackrel{i}{v}_{\alpha}, \quad \stackrel{p}{b}{ }_{\alpha}^{\beta}=\frac{v^{\beta}}{i} \stackrel{\bar{i}}{v}, \quad{ }_{c}^{r}{ }_{\alpha}^{\beta}=v_{j}^{\beta} \stackrel{\rightharpoonup}{v}_{\alpha}, \quad{ }_{c}^{s}{ }_{\alpha}^{\beta}=\frac{v^{\beta}}{\bar{j}} \bar{v}_{\alpha}^{\bar{j}} \tag{25}
\end{equation*}
$$

where $i=1,2, \ldots, k ; \bar{i}=k+1, k+2, \ldots, N ; j=1,2, \ldots, k, n+1, n+$ $2, \ldots, N ; \bar{j}=k+1, k+2, \ldots, n$.
According to (13), (25) we obtain $\stackrel{n}{a}{ }_{\alpha}^{\beta}=\stackrel{k}{b}{ }_{\alpha}^{\beta}+\stackrel{s}{c}{ }_{\alpha}^{\beta}, \stackrel{r}{c}{ }_{\alpha}^{\beta}=\stackrel{k}{b}{ }_{\alpha}^{\beta}+\stackrel{m}{a}{ }_{\alpha}^{\beta}, \stackrel{p}{b}{ }_{\alpha}^{\beta}=\stackrel{s}{c}{ }_{\alpha}^{\beta}+\stackrel{m}{a}{ }_{\alpha}^{\beta}$. Hence

$$
\begin{equation*}
\nabla_{\nu}{ }_{b}^{p}{ }_{\alpha}^{\beta}=\nabla_{\nu} \stackrel{s}{c}{ }_{\alpha}^{\beta}+\nabla_{\nu}{ }^{m}{ }_{\alpha}^{\beta} . \tag{26}
\end{equation*}
$$

Now from (26) follow
Proposition 1. If two of the three interrelated compositions are Cartesian, then the third one is Cartesian, too.

Proposition 2. If two of the three interrelated compositions are Chebyshevian, then the third one is Chebyshevian, too.

Definition 7. A net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called C3-net if the compositions, generated by the affinors (11) and (22) are Cartesian.

According to Theorem 1 the derivative equations (10) for the $C 3$-net accept the form

$$
\begin{align*}
& \nabla_{\alpha} v_{p}^{v^{\sigma}}=\stackrel{i}{\underset{p}{\alpha} \alpha_{i} v_{i}^{\sigma}}, p=1,2, \ldots, k ; i=1,2, \ldots, k, \\
& \nabla_{\alpha} v_{p}^{\sigma}=\stackrel{i}{p}{ }_{p} v_{i}^{v^{\sigma}}, p=k+1, k+2, \ldots, n ; i=k+1, k+2, \ldots, n, \tag{27}\\
& \nabla_{\alpha} v_{p}^{\sigma}=\stackrel{i}{T}{ }_{p} v_{i}^{\sigma}, p=n+1, n+2, \ldots, N ; i=n+1, n+2, \ldots, N .
\end{align*}
$$

From Theorem 2 it follows
Corollary 1. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ is a C3-net, then the coefficients of the connectedness satisfy the conditions $\Gamma_{\alpha \sigma}^{\beta}=0$ for any σ and $(\beta=1,2, \ldots, k ; \alpha=k+1, k+2, \ldots, N),(\beta=n+1, n+2, \ldots, N ; \alpha=1,2, \ldots, n)$, $(\beta=k+1, k+2, \ldots, n ; \alpha=1,2, \ldots, k, n+1, n+2, \ldots, N)$.

Definition 8. A net $\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ will be called Ch3-net if the compositions, generated by the affinors (11) and (22) are Chebyshevian.

From Theorem 6 it follows

Corollary 2. If the coordinate net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v}) \in A_{N}$ is a Ch3-net, then the coefficients of the connectedness satisfy the conditions $\Gamma_{\alpha \sigma}^{\beta}=0$ for $(\alpha, \beta=$ $1,2, \ldots, n ; \sigma=n+1, n+2, \ldots, N),(\alpha, \beta=k+1, k+2, \ldots, N ; \sigma=1,2, \ldots, k)$, $(\alpha, \beta=1,2, \ldots, k, n+1, n+2, \ldots, N, \sigma=k+1, k+2, \ldots, n)$.

Example. Let the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v}, \underset{4}{v})$ be given in the space A_{4} without torsion. Obviously the affinors $a_{\alpha}^{\beta}=v_{1}^{v^{\beta}} \stackrel{1}{v}_{\alpha}+{\underset{2}{v}}^{\beta} \stackrel{v}{v}_{\alpha}+{\underset{3}{v}}^{\beta} v_{\alpha}-v_{4}^{\beta} \stackrel{4}{v}_{\alpha}, b_{\alpha}^{\beta}={\underset{1}{v}}_{\beta^{\beta}}^{v_{\alpha}}+v_{2}^{v^{\beta}}{ }_{\alpha}^{2}-$ $v_{3}^{\beta}{ }^{3} v_{\alpha}-v_{4}^{\beta} \stackrel{4}{v}_{\alpha}, c_{\alpha}^{\beta}=v_{1}^{\beta}{ }^{1} v_{\alpha}+v_{2}^{\beta} \stackrel{v}{v}_{\alpha}-v_{3}^{\beta} \stackrel{v}{\alpha}_{\alpha}+v_{4}^{\beta} \stackrel{4}{v}_{\alpha}$, satisfy (23), (24). If the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v}, \underset{4}{v})$ is a $C 3$-net, then the derivative equations (27) accept the form $\nabla_{\alpha} v_{1}^{\sigma}=\stackrel{1}{T} \alpha_{1}^{v^{\sigma}}+\stackrel{2}{T} \alpha_{1}^{v_{2}^{\sigma}}, ~ \nabla_{\alpha} v_{2}^{\sigma}=\stackrel{1}{T} \alpha_{2}^{v^{\sigma}}+\underset{2}{\underset{T}{T}} \alpha_{2}^{v^{\sigma}}, \nabla_{\alpha} v_{3}^{\sigma}=\stackrel{3}{\underset{3}{T}} \alpha_{3}^{v^{\sigma}}, \nabla_{\alpha_{4}}^{v^{\sigma}}=\stackrel{4}{T} \alpha_{4}^{v^{\sigma}}$, from where it follows that the fields of directions ${\underset{3}{v}}_{v^{\sigma}}$, and ${\underset{4}{\sigma}}_{v^{\sigma}}$, are absolutely parallel.

REFERENCES

[1] A. Norden. Spaces with Cartesian compositions. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1963), 117-128 (in Russian).
[2] A. Norden, G. Timofeev. Invariant tests of special compositions in many-dimensional spaces. Izv. Vyssh. Uchebn. Zaved. Mat. 8 (1972), 81-89 (in Russian).
[3] E. Leontjev. Classification of the special connectives and compositions in multivariate spaces. Izv. Vyssh. Uchebn. Zaved. Mat. 5 (1967), 40-51.
[4] A. Walker. Connexions for parallel distributions in the large, II. Quart. J. Math. vol. 9, 35, (1958), 221-231.
[5] K. Yano. Differential Geometry on Complex and Almost Complex Spaces. Oxford, 1965.
[6] G. Zlatanov, B. Tsareva. Geometry of the Nets in Equiaffine Spaces. J. Geom. 55 (1966), 192-201.

University of Plovdiv "Paissii Hilendarski"
Faculty of Mathematics and Informatics
24, Tsar Assen Str.
4000 Plovdiv
Bulgaria
e-mail: zlatanov@pu.acad.bg
Received February 6, 2001

