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USING MONTE CARLO METHODS TO EVALUATE

SUB-OPTIMAL EXERCISE POLICIES FOR AMERICAN
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Abstract. In this paper we use a Monte Carlo scheme to find the returns
that an uninformed investor might expect from an American option if he
followed one of several näıve exercise strategies rather than the optimal
exercise strategy. We consider several such strategies that an ill-advised
investor might follow. We also consider how the expected return is affected
by how often the investor checks to see if his exercise criteria have been met.

1. Introduction. Options are derivative financial instruments giving

the holder the right but not the obligation to buy (or sell) an underlying asset.

They have numerous uses, such as speculation, hedging, generating income, and

they contribute to market completeness. Although options have existed for much
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longer, their use has become much more widespread since 1973 when two of the

most significant events in the history of options occured. The first of these was

the publication the Black-Scholes option pricing formula, which enabled investors

to price certain options, and the second important event was the opening of the

Chicago Board Options Exchange (CBOE), which was really the first secondary

market for options. Before the CBOE opened its doors, it was extremely difficult

for an investor to sell any options that he might own, so that he was left with the

choice of holding the option to expiry, or exercising early if that was permitted.

With the advent of the CBOE, he had the additional choice of reselling the options

to another investor.

There are various ways of categorizing options, one method being by

the exercise characteristics. Options are usually either European, meaning they

can be exercised only at expiry, which is a pre-determined date specified in the

option contract, or American, meaning they can be exercised at or before expiry,

at the holder’s discretion. A third, less common, type is Bermudan, which can be

exercised early, but only on a finite number of pre-specified occasions. European

options are fairly easy to value. However, American options are much harder

since because they can be exercised early, the holder must decide whether and

when to exercise such an option, and this is one of the best-known problems in

mathematical finance, leading to an optimal exercise boundary and an optimal

exercise policy, which if followed will maximize the expected return. Ideally, an

investor would be able to constantly calculate the expected return from continuing

to hold the option, and if that is less than the return from immediate exercise,

he should exercise the option. This process would tell the investor the location

of the optimal exercise boundary. However, to date no closed form solutions are

known for the location of the optimal exercise boundary, except for one or two

very special cases such as the call with no dividends when early exercise is never

optimal, and in general either numerical solutions or approximations must be

used to locate the optimal exercise boundary. Both of these approaches are fairly

well-developed, and we will mention some of the more important aspects of them

below; for a complete review, the reader is referred to the monographs by Kwok

[22] and Wilmott [30].

Amongst numerical methods, there is essentially a dichotomy amongst

practitioners, with one approach being to formulate the problem as a stochastic

differential equation (SDE) together with the appropriate boundary conditions

and the other to formulate it as a partial differential equation (PDE) which can be

derived by applying a no-arbitrage argument to the SDE. For the PDE approach,
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the finite-difference method is the standard approach [9, 31, 30], and this involves

solving the PDE on a discrete grid. For the SDE approach, the more popular

methods include binomial and trinomial trees [14, 6], which involve integrating

the SDE backwards in time from expiry. Geske & Shastri [17] give an early

comparison of finite-difference and binomial tree methods, although of course the

state-of-the-art in both methods has come a long way since that study. More

recently, several researchers have tried to price American options using Monte

Carlo methods, which involve integrating forwards rather than backwards in time,

and reviews of some of the more recent attempts are given in [7] and [27]. The use

of Monte Carlo methods to value American options is still a nebulous problem.

Several very promising approaches ranging from Malliavin calculus through the

bundling algorithm of Tilley [29], the Grant-Vora-Weeks algorithm [18] which

essentially treats the option as a Bermudan with exercise only at a series of

discrete dates, and the Broadie & Glasserman algorithm [11] which produces a

high and a low estimate for the option value, with the true value being between

the two estimates. Other approaches include the work of Bossaert [5] who solved

for the early exercise strategy, the paper of Ibanez & Zapatero [20] who used an

optimization scheme to find the location of the optimal exercise boundary at a

series of discrete points, and that of Mallier [25] who approximated the boundary

using a series of basis functions. Although many of these Monte Carlo approaches

are promising, many practioners feel that none of them is entirely satisfactory

yet. We should mention that the difficulties in applying Monte Carlo methods to

American options stem from the need to locate the optimal exercise boundary,

and for the problem studied here, that is not an issue: rather, we are calculating

what an option is worth if a pre-specified strategy is followed, so that location of

our (sub-optimal) exercise boundary is already known.

Turning to approximate solutions, many different approaches have been

taken over the years, and a review of some of them was given in the recent paper

by Mallier [26]. That paper was primarily concerned with evaluating the accu-

racy of series solutions to the optimal exercise boundary [15, 4, 2, 3], but also

contained a comparison between the series solutions and several other approxi-

mations, such as the quadratic approximation of MacMillan [24], which involves

solving an approximate PDE for the early exercise premium, the LUBA (lower

and upper bound approximation) of Broadie & Detemple [10], which involves

finding very tight upper and lower bounds for the optimal exercise boundary, the

Geske-Johnson formula [21, 16], which views an American option as a sequence of

Bermudan options with the number of exercise dates increasing, and the method
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of lines [12]. The approximations mentioned above represent only a small sample

of those in the literature, and more complete surveys are given in [22, 10, 26].

Although as we mentioned above, numerous studies have been done on

the valuation of American options using both numerical solutions and approxima-

tions, Both of these approaches can be difficult and time-consuming, and whereas

an institution can perform those calculations and thereby optimize their return,

an individual may well be unable to do this, and instead have his own näıve ex-

ercise policy, choosing to exercise the option when certain conditions are met, for

example when the value of the option reaches some multiple of the exercise price.

We will refer to such an individual as an uninformed investor. The expected

return from such sub-optimal strategies will be less than or equal to that when

the optimal exercise policy is pursued.

2. Monte Carlo scheme. In this study, we use a Monte Carlo scheme

to look at several such strategies that an ill-advised investor might follow, and

calculate the expected return using these strategies. In terms of the stock price

S and the initial stock price S0, the 8 strategies we used for the call option to

exercise the option when:

(1): Never (i.e. treat the option like a European).

(2): If S is 110% or more of S0 (put: S ≤ 0.9 S0).

(3): If S is 115% or more of S0 and in money (put: S ≤ 0.85 S0).

(4): If S is greater than S0 and at or in money (put: S < S0).

(5): If S goes down by 10% and still in money (put: S ≥ 1.1S0).

(6): If S goes down by 5% (put: S ≥ 1.05S0).

(7): If S goes down by 10% from its peak and in the money. (put: S up by 10%

from trough).

(8): If S goes up on 5 successive time-steps and is in the money (put: down).

We should recall that for the call with no dividends, it is never optimal to exercise

before the expiration date, so we would expect strategy 1 to be the best for the

call. In addition to evaluating the expected return to an investor if he were to

follow one of these näıve strategies, we will also look at how the expected return

is affected by how often the investor checks to see if his exercise criteria have

been met. As we mentioned above, we will tackle this problem with Monte Carlo

simulation. This approach is well-suited for this particular problem, since the

underlying stock price S is assumed to follow a random walk. The use of Monte

Carlo methods for option pricing was pioneered by Boyle [8], and these meth-
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ods have since become extremely popular because they are both powerful and

extremely flexible. Although the use of Monte Carlo methods to value American

options is still a nebulous problem, with for example several researchers pursuing

Malliavin calculus while others are attempting different approaches, these diffi-

culties stem from the need to locate the optimal exercise boundary, and for the

problem studied here, that is not an issue: rather, we are calculating what an

option is worth if one of several näıve strategies is followed, and so the location of

our (sub-optimal) exercise boundary is fairly simple. Returning to option pricing

in general, in this context, Monte Carlo methods involve the direct stochastic

integration of the underlying Langevin equation for the stock price, which is as-

sumed to follow a log-normal random walk or geometric Brownian motion. The

heart of any Monte Carlo method is the random number generator, and our code

employed the Netlib routine RANLIB, which produces random numbers which

are uniformly distributed on the range (0, 1) and which were then converted to

normally distributed random numbers. This routine was itself based on the arti-

cle by L’Ecuyer & Cote [23]. Antithetic variables were used to speed convergence,

and a large number of realizations were performed to ensure accurate results. Our

simulations, including other runs not presented here, required about a month’s

CPU time on a DEC Alpha and were performed on the Beowulf cluster at the

University of Western Ontario.

The starting point of our analysis is the risk-neutral random walk for the

price of the underlying S in the absence of dividends,

(2.1) dS = rSdt + σSdX,

where dX describes the random walk, dt is the step size, taken to be 0.01 in our

simulations, r is the risk free rate and σ the volatility. If we assume that the simu-

lation is started at time t0 and ends at expiry T , then the other parameters which

affect the simulations are the initial stock price S0 = S(t0), the exercise price E

and the time to expiry, τ = T − t0. For each value of the parameters, a separate

set of runs was done for each of the exercise strategies. For each realization, at

each time step, we first check to see if the exercise criteria has been satisfied, and

either exercise at that step or continue to the next time step, and repeat this

procedure either the option has been exercised or we reach expiry, at which time

the option is either exercised or expires worthless. For each realization, we calcu-

late the payoff, which is max [S (TE) − E, 0] for the call and max [E − S (TE) , 0]

for the put, where TE is the time at which the option was exercised. We then
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Fig. 1. Effect of E: call. S0 = 1, r = 0.05, σ = 0.1. (a): E=0.5, (b) 1, (c) 1.5, (d) 2.

discount this value back to the starting time to find its present value. The value

of the option is the average over all realizations of this present value.

3. Results. In this section, we present the results of some of our simu-

lations, and in particular examine the effects of varying the various parameters.

In figure 1, we look at the effect of varying the strike price E for the call while

holding the other parameters constant; the corresponding runs for the put are in

figure 2. For the call, strategy 1 (holding) is best, which is to be expected given

that it is never optimal to exercise a call with no dividends. By contrast, for

the put, no one strategy is best, and in actuality, they are all bad. Holding is no

longer optimal and is sometimes the worst strategy amongst those studied. While

for the call, the value always increased with time to expiry, for the put sometimes

the value decreased and sometimes it increased. Presumably, this happens be-
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Fig. 2. As for figure 1 but for the put

Fig. 3. Effect of E. S0 = 1, r = 0.05, σ = 0.1, τ = 0.5 (a) call, (b) put.
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Fig. 4. Effect of S0. E = 2, r = 0.05, σ = 0.1, τ = 0.5. (a) call, (b) put.

Fig. 5. Effect of σ. E = 2, r = 0.05, S0 = 1, τ = 0.5. (a) call, (b) put.

Fig. 6. Effect of r. E = 2, σ = 0.1, S0 = 1. (a) call τ = 2.5, (b) put τ = 0.5.
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cause some of the strategies for the put are especially bad, and increasing the

tenor increases the possibility of inopportune exercise. In figure 3, we see that as

we increased the exercise price, the value of the call decreased while that of the

put increased. This dependence on exercise price is of course to be expected from

our knowledge of the greeks. Similarly, we looked at the effect of varying the

initial stock price, finding as expected that as we increased S0 the option value

increased for the call but decreased for the put. These results are summarized in

figure 4. In figure 5, we examine the effects of varying the volatility, and find that

for both the put and call, increasing σ leads to an increase in the value of the

option, again as expected. In figure 6, we look at the effect of varying the risk-

free rate r, and find that increasing r increases the option value for the call but

decreases it for the put, once again as expected. We also studied the effect that

the frequency of application of the strategy had on the expected returns from the

option. Our results are shown in figure 7. The time-step used in our simulations

Fig. 7. Effect of checking. E = 2, σ = 0.1, r = 0.05, S0 = 1, τ = 20. (a) call, (b) put.

was dt = 0.01, and to examine the effects of frequency we applied the strategy

initially every step or 0.01 time units, and then (in different runs) every 10 steps

(0.1 units), 100 steps (1 units), 500 steps (5 units) and 1000 steps (10 units). The

motivation for this was an attempt to model the real world behaviour of different

classes of investor, ranging from institutions using computer trading through a

day trader who is constantly checking prices, and an average investor who might

check prices daily of weekly, to a pension fund investor gets report once a month.

Here, we are essentially treating the option like a Bermudan, as indeed we have

in this entire study since we are using a finite time-step. We see that for the call,



216 Ghada Alobaidi, Roland Mallier

strategy 1, which was holding, is unaffected by the frequency of checking and

that strategy 5, which for these particular parameter values results in infrequent

exercise, is little affected by the frequency, but that amongst the other strategies

increasing the interval between checks leads to an increase in value. We should

recall that it is never optimal to exercise the call without dividends, so that in-

creasing the interval reduces the likelihood of inopportune exercise. For the put,

strategy 1, which was holding, is again unaffected by the frequency, while for the

other strategies, increasing the interval leads to a decrease in value. We should

recall that it is sometimes optimal to exercise the put even without dividends, so

that increasing the interval reduces exercise possibilities.

4. Conclusion. In this paper, we have looked at a number of näıve

exercise strategies for American options, and used a Monte Carlo scheme to find

the returns that an investor would expect if he followed one of these strategies,

looking at the effects of varying the sundry parameters. The variation of the

expected returns with these parameters was largely as expected from the greeks.

As expected, for a call without dividends, holding was the best strategy. For the

put, no single strategy amongst those studied was best, with different strategies

being better in different areas of parameter space; in fact, all of the strategies

for the put and all apart from holding for the call were fairly bad strategies from

the point of view of the returns that an investor would expect if he pursued one

of those strategies, and so our advice to an unsophisticated investor would be to

steer clear of American options.
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