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1. Introduction. This paper is about a conjecture I formulated almost
half a century ago. It is strikingly simple to state and can be explained to high-
school students: Given a polynomial p of degree n ≥ 2 with all zeros zk in
{z ∈ C : |z| ≤ r}, for each zero zk at least one zero of the derivative p′ is in
{z ∈ C : |z − zk| ≤ r}. Here and further C is the complex plane. As for now, the
conjecture is proved by Brown and Xiang [12] for n ≤ 8. My aim here is to give
an overview to the work in more than 80 related papers that are known to me
and also to put the conjecture in a more general perspective.

To place the conjecture in the context of the surrounding theory, we start
with notation and definitions. Let p(z) = (z − z1)(z − z2) · · · (z − zn) be an
algebraic polynomial and p′(z) = n(z− ζ1)(z − ζ2) · · · (z− ζn−1) be its derivative.
The operator of differentiation D = ∂/∂z may be considered as a mapping of
the set A = {z1, z2, . . . , zn} of n points (the zeros of the polynomial p) from the
complex plane C in to the set A′ = {ζ1, ζ2, . . . , ζn−1} of n − 1 points (the zeros
of its derivative, called also critical points of p.). Some of the zeros z1, z2, . . . , zn

of p may coincide and they represent a multiple zero. A classical area of algebra,
the so-called Geometry of Polynomials, studies the properties of the mapping D;
a basic reference for us is the celebrated book of M. Marden [29]. A milestone in
this theory is the classical

Gauss-Lucas Theorem. The convex hull of A contains A′.

From this theorem we obtain:

Corrollary 1. If all the zeros of an algebraic polynomial p(z), of degree
n ≥ 2, lie in a disk with radius r and z1 is a zero of p(z), then the disk with
center z1 and radius 2r contains all zeros of the derivative p′(z).

In 1958 I was intrigued by the 2r in this result and started thinking of
what would happen if we have just r there. My thoughts led me to a statement
which I decided must be true, and I formulated it as a conjecture. The conjecture
is as follows:

Conjercture 1. If all the zeros of an algebraic polynomial p(z), of degree
n ≥ 2, lie in a disk with radius r and z1 is a zero of p(z), then the disk with center
z1 and radius r contains at least one zero of the derivative p′(z).

If true, this conjecture is sharp in the sense that the polynomial p(z) =
zn − 1 with zeros in the unit circle and p′(z) = nzn−1 with a zero of multiplicity
n − 1 in the origin.

Conjecture 1 became first known as Ilieff’s conjecture in the following
way. L. Ilieff and W. K. Hayman attended the International Conference on the
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Theory of analytic functions in Erevan, 6–13 September 1965. At this conference,
Prof. Ilieff formulated Conjecture 1, mentioning my name as its author. Prof.
Hayman remembered the conjecture as coming from Ilieff and included it in his
book [21, Problem 4.5.] as Ilieff’s conjecture.

M. Marden [31, p. 267] wrote the following for Conjecture 1: “This con-
jecture was included in the collection of Research Problems in Function Theory,
published in 1967 by Professor Hayman [21]. Since it had been brought to Hay-
man’s attention by Professor Ilieff, it became known as “Ilieff’s conjecture”. Ac-
tually, Conjecture 1 was due to the Bulgarian mathematician Bl. Sendov who had
acquainted me and probably others with it in 1962 at the International Congress
of Mathematics held in Stockholm.”

The interest of M. Marden, one of the masters in Geometry of Polyno-
mials, in Conjecture 1 is mentioned by his sons in [28]: “To give a flavor of his
interests, we will end by stating a conjecture he was obsessed with over 25 years;
it was repeated in most of his NSF grants, and most of his Monthly article of
1983 was devoted to it. This is the Ilieff Conjecture which Morrie asserts is due
to Sendov who told Morrie about it in 1962: . . . ”

Conjecture 1 is trivial for polynomials of degree 2. After it appeared in
Hayman’s book [21], a number of proofs have been published for polynomials of
degree 3, see [7, 44, 46, 34, 22, 45, 15, 6, 53] and of degree 4, see [44, 46, 34, 22,
14, 6]. A simple proof of these cases is a part of Corollary 4 given in further lines.
The proof for n ≤ 5 was given by A. Meir and A. Sharma [34] in 1969, see also
[27, 6]. More than 20 years later a proof for n ≤ 6 was published by J. Brown

[9] in 1991, see also [5, 6]. The case n = 7 was proved first by J. Borcea [6] in
1996 and by J. Brown [10] in 1997. In a recent paper J. E. Brown and G.

Xiang (1999) [12] proved Conjecture 1 for n ≤ 8. The proof is very elaborate
and is based on obtaining good upper and lower estimates on the product of the
moduli of the critical points of p. The method of proof in [12] could be probably
extended to n = 9 but is becoming too laborious.

Conjecture 1 is proved for every polynomial with 3, 4, 5, 6, 7 and 8 distinct
zeros, see [45, 8, 24, 25, 27, 12]. G. L. Cohen and G. H. Smith [14] proved
that Conjecture 1 is true for polynomials of degree n with m distinct zeros, if
n ≥ 2m−1. The general case is still open. Interestingly enough, it is not proved
even for polynomials with real coefficients and only real critical points, see [11].

A conjecture, stronger than Conjecture 1 was announced in 1969 by A.

G. Goodman, Q. I. Rahman and J. Ratti [19] and independently by G.

Schmeisser [46]

Conjecture 2 (Ratti-Schmeisser). If all the zeros of an algebraic poly-
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nomial p(z) of degree n ≥ 2 lie in the unit disk D(0, 1) = {z : |z| ≤ 1} and z1

is a zero of p(z), then the disk D(z1/2, 1 − |z1|/2) contains at least one zero of
p′(z).

Conjecture 1 follows from Conjecture 2 inasmuch the disk D(z1/2, 1 −
|z1|/2) lies in the disk D(z1, 1). Conjecture 2 was proved by G. Gacs [18] for
2 ≤ n ≤ 5. M. J. Miller [35], using computers, constructed counterexamples
for Conjecture 2 for polynomials of degree 6, 8, 10 and 12. Counterexamples for
polynomials of degree 7, 9 and 11 were found by S. Kumar and B. G. Shenoy

[26]. Most probably, Conjecture 2 is not true for every natural n ≥ 6. The
motivation behind Conjecture 2 was that it is true for a zero z1 if |z1| = 1, see
[19, 46] and Corollary 2. From this fact it follows that Conjecture 1 is true for a
polynomial p if all the corners of the convex hull of its zeros lie in a circle.

By applying a linear transformation, it suffices to prove Conjecture 1
only for the polynomials p from the set Pn of all monic polynomials p(z) =
(z − z1)(z − z2) · · · (z − zn), for which the unit disk D = D(0, 1) is the
smallest disc containing all zeros of p. The substance of the Conjecture 1
is to determine how large may be the deviation ρ(A(p);A(p′)) (see Subsection
2.1) of the set A(p) of the zeros of an algebraic polynomial p from the set A(p′)
of the zeros of its derivative p′. In this notation, Conjecture 1 may be formulated
as follows.

Conjecture 1. If p ∈ Pn, then ρ(A(p);A(p′)) ≤ 1.

A problem in a sense inverse to Conjecture 1 was formulated and solved
by A. Aziz [2].

Theorem 1 (A. Aziz). If p ∈ Pn, then ρ(A(p′);A(p)) ≤ 1.

In fact, A. Aziz proved a stronger statement, that if p ∈ Pn and ζ1 is
a zero of p′(z), then the disk with center 2ζ1 and radius 1 contains at least one
zero of the polynomial p(z). Theorem 1 follows directly from the Gauss–Lucas
Theorem, as the following general statement is true. Let the set of points A lie
in a circle with radius r and the point b lies in the convex hull of A. Then the
disk with center b and radius r contains at least one point from A.

In what follows we review some results related to Conjecture 1 and con-
sider several generalizations.

Conjecture 3. If p ∈ Pn and n ≥ s + 1, then

ρ(A(p);A(p(s))) ≤ 2s

s + 1
.
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For s = 1, Conjecture 3 is Conjecture 1, and for s = n − 1 it is simple to
prove, since p(n−1)(z) has only one zero. By Corollary 4, Conjecture 3 is proved
also for: s = n − 2 and n ≥ 3, for s = n − 3 and n ≥ 4, for s = n − 4 and n ≥ 6.

For every natural n ≥ 2, the set Pn is compact. Therefore, for every
n ≥ s + 1 and s = 1, 2, 3 . . ., there exists a polynomial pn,s ∈ Pn, such that

ρn,s = ρ(A(pn,s);A(p(s)
n,s)) = sup{ρ(A(p);A(p(s))) : p ∈ Pn}.(1)

The polynomial pn,s is called extremal for ρ(A(p);A(p(s))) in Pn and a

zero z1 ∈ A(pn,s) is called extremal zero of pn,s, if ρ(z1;A(p
(s)
n,s)) = ρn,s.

In 1972 D. Phelps and R. S. Rodriguez [40] conjectured that, if
a polynomial p is extremal for ρ(A(p);A(p′)) in Pn, then p′(z) = nzn−1. We
generalize this conjecture as follows.

Conjecture 4. If a polynomial p is extremal for ρ(A(p);A(p(s))) in Pn,
then

p(s)(z) =
n!

(n − s)!
(z − λn,s)

n−s,

where λn,s is a constant.

By Theorem 10, an extremal polynomial for ρ(A(p); A(p′′)) in the set of
polynomials p ∈ P4 with real coefficients, is the polynomial

p(z) = (z − 1)2
(

z2 +
2

3
z + 1

)

with p′′(z) = 12

(

z − 1

3

)2

.(2)

Until now, we fail to prove that the polynomial (2) is extremal for ρ(A(p);
A(p′′)) in P4 and that ρ4,2 = 2/

√
3. Observe that, according to Conjecture 3, we

have ρ4,2 ≤ 4/3 = ρ3,2.
In 1972, G. Schmeisser [47] formulated the following problem, which is

a somewhat relaxed version of Conjecture 1:

Problem 1 (G. Schmeisser). Find a constant ρ (as small as possible),
such that for every p ∈ Pn, the inequality ρ(A(p);A(p′)) ≤ ρ holds.

In other words, the problem is to estimate from above ρn,1, n = 2, 3, . . . .
From Gauss–Lucas Theorem it follows that ρ ≤ 2, see Corollary 1. In

[47] it is proved that ρ ≤ 1.568. The best estimate for ρ, till now, is given by B.

Bojanov, Q. I. Rahman and J. Szynal [4], which is based on the result that
for every p ∈ Pn, the inequality

ρ(A(p);A(p′)) ≤ (1 + |z1z2 · · · zn|)1/n(3)
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holds.
After J. E. Brown and G. Xiang [12] proved Conjecture 1 for n ≤ 8,

from (3) it follows that

ρ(A(p);A(p′)) ≤ 1.08006 . . . .

This inequality also implies that limn→∞ ρn,1 = 1, or that Conjecture 1 is asymp-
totically true. There are arguments, supporting a more general statement.

Conjecture 5. For every fixed natural number s,

ρs+1,s ≥ ρs+2,s ≥ ρs+3,s ≥ · · · and lim
n→∞

ρn,s = 1.

We may consider also deviations of sets defined by the zeros of a polyno-
mial. Such sets, for example, are:

H(p) = H(A(p)) – the convex hull of the zeros of p and
D(p) = D(c(p), r(p)) – the smallest disk containing all zeros of p with

center c(p) and radius r(p). By definition, D(p) for a polynomial p ∈ Pn is the
unit disk D = D(0, 1).

In 1977, G. Schmeisser [48] formulated

Conjecture 6 (G. Schmeisser). For every p ∈ Pn, the inequality
ρ(H(p);A(p′)) ≤ 1 holds.

Conjecture 6 is stronger than Conjecture 1 inasmuch A(p) ⊂ H(p). Con-
jecture 6 is true, if all the corners of H(p) lie in the unit circle.

In the following sections we restate Conjecture 1 in the format of the
set-valued metric topology. This new formulation naturally induces new related
problems and generalizations. In Section 2 we start with an introduction to set-
valued metric topology in the complex plane C, which was first used in explicit
way in the Geometry of polynomials in [38].

In Section 3, for a given polynomial p we consider, along with the set
A(p) of its zeros of this polynomial, the convex hull H(p) of A(p), containing
the set A(p). Then, for every polynomial p of degree n, we study the deviation
of one of the sets A(p) and H(p) from one of the sets A(p(s)) and H(p(s)) for
s = 1, 2, . . . , n − 1. Some of these deviations are trivial for calculation, but for
most of them it is difficult even to conjecture an exact estimate.

2. Notation and basics.

2.1. Deviation of sets. Let A and B be two bounded and closed sets
of points in the complex plane C. We will use the notations:
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1. ρ(b;A) = inf{|b − a| : a ∈ A},

2. ρ(B;A) = sup{ρ(b;A) : b ∈ B} – the deviation of B from A,

3. D(A) = D(c(A), r(A)) - the smallest closed disk, which contains A, with
center c(A) and radius r(A).

A simple and useful statement is

Lemma 1. If A,B, V are bounded point sets in C and B ⊂ V , then

ρ(A;B) ≥ ρ(A;V ) and ρ(B;A) ≤ ρ(V ;A).

P r o o f. From the definition

ρ(A;B) = sup{ρ(a;B) : a ∈ A} ≥ sup{ρ(a;V ) : a ∈ A} = ρ(A;V ),

as B ⊂ V and

ρ(a;B) = inf{|a − b| : b ∈ B} ≥ inf{|a − v| : v ∈ V } = ρ(a;V ).

In the same way

ρ(V ;A) = sup{ρ(v;A) : v ∈ V } ≥ sup{ρ(b;A) : b ∈ B} = ρ(B;A),

as B ⊂ V . �

In general ρ(B;A) 6= ρ(A;B). The Hausdorff distance [20] between two
sets A and B is

h(A,B) = max{ρ(A;B), ρ(B;A).

In connection with the Theorem 1, Conjecture 1 may be stated as follows:
If the zeros of an algebraic polynomial lie in a circle with radius r, then

the Hausdorff distance between the set of its zeros and the set of the zeros of its
derivative is not greater than r.

It is natural to ask for the Hausdorff distance between the set of the zeros
of a polynomial and the set of the zeros of its second and higher derivatives. We
consider this question in the following section.

2.2. Basic statements. We list some classical theorems from the Geom-
etry of polynomials, needed for the following. For more see [29].

Theorem 2. Let z1 and z2 be two different zeros of the polynomial p
and let l be the bisector of the segment from z1 to z2. Then in every two closed
half-plane, defined by l, there is at least one zero of p′.
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The bisector property was noticed for the first time by G. Szegó [50].

Definition 1. The polynomials

p(z) =

n
∑

k=0

(

n

k

)

akz
k and q(z) =

n
∑

k=0

(

n

k

)

bkz
k

are called apolar if
n
∑

k=0

(−1)k
(

n

k

)

akbn−k = 0.(4)

The equation (4) is called the apolarity condition.

Theorem 3 (Grace Apolarity Theorem). Let p and q be apolar, then any
circular region containing all zeros of p or q contains at least a zero of the other.

A circular region is a closed disk or a closed half-plain.

Lemma 2. If p(z) = a0z
m + a1z

m−1 + · · · + am and a0 6= 0, then p has
at least one zero in the disk D(0, r), where r = |am/a0|1/m.

P r o o f. The polynomial q(z) = a0z
m − (−1)mam is apolar to the poly-

nomial p and all of the zeros of q lie in the disk D(0, |am/a0|1/m). The proof of
the lemma follows from the Grace Apolarity Theorem 3. �

Lemma 3. If p is a monic polynomial of degree n, p(a) = 0 and

|p(s)(a)| ≤ n!

(n − s)!
rn−s, s = 1, 2, . . . , n − 1,

then ρ(a;A(p(s))) ≤ r.

P r o o f. We have

p(s)(a − z) = (−1)n−s n!

(n − s)!
zn−s + · · · + p(s)(a).

By Lemma 2
∣

∣

∣

∣

an−s

a0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

p(s)(a)(n − s)!

n!

∣

∣

∣

∣

∣

= rn−s,

or r = |am/a0|1/(n−s). �

2.3. Polynomial set Pn. The linear transformation z = au + b, a 6= 0
transforms the zeros of a polynomial and the zeros of its derivatives in the same
way. Therefore, we may consider only polynomials with zeros on the unit disk.
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Let Pn be the set of all polynomials

p(z) = (z − z1)(z − z2) · · · (z − zn); n ≥ 2

for which the unit disk D = D(0, 1) = {z : |z| ≤ 1} is the smallest disk containing
z1, z2, . . . , zn. With A(p) we denote the set of all distinct zeros of the polynomial
p and with H(p) = H(A(p)) the convex hull of A(p). In the same way we use the
notations

D(p) = D(A(p)) = D(c(A(p)), r(A(p))) = D(c(p), r(p)).

From the definition of Pn, a simple and useful statement follows:

Lemma 4. If p ∈ Pn, then:

1. At least two zeros of p lie in the unit circle C = {z; |z| = 1};

2. At least one zero of p lies in each subarc of C with length π.

3. Deviations. For a polynomial p ∈ Pn, we shall consider the deviation
of one of the sets

A(p),H(p)(5)

from one of the sets

A(p(s)),H(p(s)),(6)

for s = 1, 2, . . . n − 1.

By definition

A(p) ⊂ H(p) and A(p(s)) ⊂ H(p(s)).(7)

If U is a compact set of polynomials, then the sets

A(U) = {A(p) : p ∈ U} and H(U) = {H(p) : p ∈ U}

are also compact. Since for every deviation between a set (5) from a set (6)
there exist extremal polynomials. The polynomial p is extremal for the deviation
ρ(A(p);A(p(s))) in Pn if

ρ(A(p);A(p(s))) = sup{ρ(A(p);A(p(s))) : p ∈ Pn} = ρ(A(Pn);A(P(s)
n )).(8)
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3.1. Deviation of a particular zero. Let p ∈ Pn and {z1, z2, . . . , zn}
be the zeros of p. By definition, |zk| ≤ 1 for k = 1, 2, . . . , n. We call a zero zk

peripheral, if |zk| = 1 and internal, if |zk| < 1.
3.1.1. Peripheral zero. Following A. Meir and A. Sharma [34], we

prove:

Lemma 5. If p ∈ Pn, z1 ∈ A(p) and |z1| = 1, then there exists a zero ζ1

of p(s)(z) on the disk D(z1/(s + 1), s/(s + 1)) ⊂ D(z1, 2s/(s + 1)).

P r o o f. Without loss of generality, set z1 = 1 and p(z) = (z−1)q(z). Let
ζ1, ζ2, . . . , ζn−s be the zeros of p(s) and η1, η2, . . . , ηn−s be the zeros of q(s−1). By
Gauss–Lucas Theorem |ηk| ≤ 1; k = 1, 2, . . . , n − s. If p(s)(1) = 0, we are done.
Let p(s)(1) 6= 0, then

p(s+1)(1)

p(s)(1)
=

s + 1

s
· q(s)(1)

q(s−1)(1)

and
n−s
∑

j=1

ℜ
(

1

1 − ζj

)

=
s + 1

s

n−s
∑

k=1

ℜ
(

1

1 − ηk

)

≥ (s + 1)(n − s)

2s
.

If ℜ(1/(1 − ζ1)) = max{ℜ(1/(1 − ζj)) : j = 1, 2, . . . , n − s}, then

ℜ
(

1

1 − ζ1

)

≥ s + 1

2s
,

therefore
ζ1 ∈ D(1/(s + 1), s/(s + 1)) ⊂ D(1, 2s/(s + 1)). �

Corrolary 2. If p ∈ Pn, z1 ∈ A(p) and |z1| = 1, then there exists
ζ1 ∈ A(p(s)), such that

|z1 − ζ1| ≤
2s

s + 1
; s = 1, 2, . . . , n − 1

and

ρ(z1;A(p(s))) ≤ 2s

s + 1
; s = 1, 2, . . . , n − 1.

3.1.2. Internal zero.

Lemma 6. If p ∈ Pn, z1 ∈ A(p), |z1| < 1 and s ∈ {1, 2, . . . , n − 1}, then

|p(s)(z1)| ≤
(n − 3)!

(n − s)!
2n−s−1s(n2 + s2 − 3n − 3s + 4).
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P r o o f. As |z1| < 1, by Lemma 4, there are two zeros z2, z3 ∈ A(p) such
that |z2| = |z3| = 1,

arg z2 ≤ arg z1 ≤ arg z3 and 0 ≤ arg z3 − arg z2 ≤ π.

Then, it is geometrically obvious that

|z1 − z2||z1 − z3| ≤ 2 and

∣

∣

∣

∣

z1 −
z2 + z3

2

∣

∣

∣

∣

≤ 1.(9)

Using (9), we have

p(s)(z1) = s!
∑

2≤k1≤···≤kn−s≤n

(z1 − zk1
)(z1 − zk2

) · · · (z1 − zkn−s
) =

s!



(z1 − z2)(z1 − z3)
∑

4≤k3≤···≤kn−s≤n

(z1 − zk3
)(z1 − zk4

) · · · (z1 − zkn−s
)+

2

(

z1 −
z2 + z3

2

)

∑

4≤k2≤···≤kn−s≤n

(z1 − zk2
)(z1 − zk3

) · · · (z1 − zkn−s
)+

∑

4≤k1≤···≤kn−s≤n

(z1 − zk1
)(z1 − zk2

) · · · (z1 − zkn−s
)





and

|p(s)(z1)| ≤ s!

[

2 · 2n−s−2

(

n − 3

n − s − 2

)

+ 2 · 2n−s−1

(

n − 3

n − s − 1

)

+ 2n−s

(

n − 3

n − s

)]

=

(n − 3)!

(n − s)!
2n−s−1s(n2 + s2 − 3n − 3s + 4). �

Corrolary 3. If p ∈ P4, z1 ∈ A(p) and |z1| < 1, then

|p′′(z1)| ≤ 1 and ρ(z1;A(p′′)) ≤ 1.

3.2. Deviation of A(p). In this section we consider some easy cases of
estimation of the deviation of A(p) from A(p(s)) and H(p(s)); n ≥ s + 1.
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3.2.1.Deviation of A(p) from A(p(s)). We start with partial proofs
of a generalization of Conjecture 1.

Conjecture 3. For every p ∈ Pn and s ∈ {1, 2, . . . , n−1}, the inequality

ρ(A(p);A(p(s))) ≤ 2s

s + 1

holds.

For n = 1, Conjecture 3 is Conjecture 1. For s = n − 1, Conjecture 3 is
trivial, as p(n−1)(z) has only one zero ζ1 = (z1 + z2 + · · · + zn)/n. Then

|z1 − ζ1| ≤ sup

{

z1 −
z1 + z2 + · · · + zn

n
: |zk| ≤ 1, k = 1, 2, . . . , n

}

=
2(n − 1)

n
.

Theorem 4. Conjecture 3 is true for a polynomial p ∈ Pn if all the
corners of H(p) are on the unit circle C = {z : |z| = 1}.

P r o o f. If all the corners zk1
, zk2

, . . . , zkl
of H(p) are on the unit circle

(i. e., are peripheral zeros), then

H(p) ⊂
l
⋃

m=1

D

(

zkm

s + 1
,

s

s + 1

)

.

According to Lemma 5, if a zero z1 ∈ D(zk1
/(s+1), s/(s+1)) ⊂ D(z1, 2s/(s+1)),

then there exists a zero ζk1
of p(s), such that |z1 − ζk1

| ≤ 2s/(s + 1). �

From Corollary 2 and Lemma 6, it follows that:

Theorem 5. Conjecture 3 is true for a given pair (s, n) if

s
n2 + s2 − 3n − 3s + 4

n(n − 1)(n − 2)
≤ 2

(

s

s + 1

)n−s

.(10)

Corrolary 4. Conjecture 3 is true for:
1) s = n − 1 and n ≥ 2;
2) s = n − 2 and n ≥ 3;
3) s = n − 3 and n ≥ 4;
4) s = n − 4 and n ≥ 6.

From Corollary 4, we have that Conjecture 1 is true for n = 3 and n = 4,
which is a simple proof of the conjecture for this cases. As we already mentioned,
Conjecture 1 is proved for every natural n ≤ 8 [12].
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Theorem 6. For every natural s ≥ 2 and n ≥ s + 1, the inequality

ρ(A(Pn);A(P(s)
n )) > 1

holds, see (8).

P r o o f. Consider the polynomial

p(z) = zn − z − 1 with p(s)(z) =
n!

s!
zn−s.

If ρ(A(p);A(p(s))) = 1, then the center of the disk D(p) is in the ori-
gin, together with all zeros of p(s)(z). Suppose that D(p) = D(0, r). Then, by
Lemma 4, there exist two zeros zk = reiϕk ; k = 1, 2 of p(z) with 0 ≤ ϕ1 < ϕ2 ≤ π.
For k = 1, 2, we have

p(reiϕk) = rneinϕk−reiϕk−1 = rn cos nϕk−r cos ϕk−1+i(rn sin nϕk−r sin ϕk) = 0,

or

cos ϕk =
r2n − r2 − 1

2r
for k = 1, 2,

which is a contradiction, as 0 ≤ ϕ1 < ϕ2 ≤ π. �

3.2.2. Deviation of A(p) from A(p′). In this subsection we list some
cases, when Conjecture 1 is proved.

In 1969 G. Schmeisser [46] proved the following statement.

Theorem 7. Conjecture 1 is true for a polynomial p ∈ Pn if p(0) = 0.

P r o o f. An elegant geometric proof is given in G. Gacs (1971) [18], based
on Theorem 2. Let z1 6= 0 be a zero of p and l be the bisector of the segment
from z1 to 0. Let L be the half-plane defined by l and 0 6∈ L. Then by Theorem 2
and Gauss–Lucas Theorem it follows that (L

⋂

D) ⊂ D(z1, 1) contains at least
one zero of p′. �

Remark 1. Conjecture 1 is trivially true for every p ∈ Pn, if p′(0) = 0.

Let p ∈ Pn and have the form

p(z) =

m
∑

k=0

akz
nk ; n = nm > nm−1 > · · · > n0.(11)

If m < n, the polynomial (11) is lacunary.

Theorem 8 (G. Schmeisser). Conjecture 1 is true for the polynomial
(11), if n ≥ 3m − 2.
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Theorem 9 (G. Schmeisser). Conjecture 1 is true for p ∈ Pn, if

p(z) = zn + a2z
n2 + a1z

n1 + a0z
n0 , where n > n2 > n1 > n0.

D. Phelps and R. S. Rodriguez [40] proved Conjecture 1 for all poly-
nomials p with H(p) a segment.

In 1977 G. Schmeisser [48] proved Conjecture 1 for polynomials p with
a convex hull H(p), which is a triangle. The proof is purely geometric.

Conjecture 7 (G. Schmeisser). Conjecture 1 is true for all p ∈ Pn for
which H(p) is a quadrangle.

3.2.3. Deviation of A(p) from A(p′′). It is natural to expect that
the problem to find ρ(A(Pn);A(P ′′

n)) (see (8)) is much more difficult than to find
ρ(A(Pn);A(P ′

n)). Most probably, Conjecture 3 is not sharp for s = 2, 3, . . . , n−2.
It is trivial that ρ(A(P3);A(P ′′

3 )) = 4/3.

Conjecture 8. ρ(A(P4);A(P ′′
4 )) = 2/

√
3.

This conjecture is motivated by the polynomial p(z) =

(

z2 +
2

3
z + 1

)

(z−

1)2, as for this polynomial ρ(A(p);A(p′′)) = 2/
√

3, and by the following state-
ment.

Theorem 10. Conjecture 8 is true for a polynomial p ∈ P4, if p has real
coefficients.

P r o o f. Suppose the contrary, that ρ(A(P4);A(P ′′
4 )) > 2/

√
3. Let p be

an extremal polynomial for ρ(A(p);A(p′′)) in P4 and z1 be an extremal zero of
p. Then, from Corollary 3 follows that |z1| = 1.

Consider the two possible cases, when p has real coefficients:
1) z1 is a real extremal zero of p, then z1 = −1 or 1. We may suppose

that z1 = 1 and that p has the form

p(z) = (z2 +2αz +1)(z−β)(z−1) = z4 +(2α−1−β)z3 +(1+β)(1−2α)z2 + · · · ,

where α ∈ [0, 1] and β ∈ [−1, 1].
Then

1

12
p′′(z) = z2 − x + y

2
z +

1

6
y(1 + x),

with zeros

ζ1,2 =
x + y

4
± 1

2

√

∆(x, y),(12)



Generalization of a Conjecture in the Geometry of Polynomials 297

where y = 1 − 2α ∈ [−1, 1], x = β ∈ [−1, 1] and

∆(x, y) =

(

x + y

2

)2

− 2

3
y(1 + x).

From ∆(x, y) = 0 and −1 ≤ y ≤ 1 follows that

y = y1(x) =
1

3

(

x + 4 −
√

8(2 − x)(1 + x)
)

.

1.1) For

∆(x, y) ≥ 0, y ≤ 1

3

(

x + 4 −
√

8(2 − x)(1 + x)
)

we have

1 − ζ1 = 1 − x + y

4
− 1

2

√

∆(x, y).

Suppose that

1 − ζ1 >
2√
3

or

−x + y

4
− 1

2

√

∆(x, y) >
2√
3
− 1 = λ,

hence

−λ − x + y

4
>

1

2

√

δ(x, y) ≥ 0(13)

and
y < −x − 4λ.(14)

From (13) we have

λ2 +
x + y

2
λ > −1

6
y(1 + x),

or

y > −3λ(2λ + x)

1 + x + 3λ
.(15)

From (14) and (15) it follows that

x + 4λ <
3λ(2λ + x)

1 + x + 3λ

or
x2 + (1 + 4λ)x + 4λ + 6λ2 < 0,
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which is impossible for −1 ≤ x ≤ 1.

1.2) For

∆(x, y) ≤ 0, y ≥ 1

3

(

x + 4 −
√

8(2 − x)(1 + x)
)

,

we have

|1 − ζ1|2 =

(

1 − x + y

4

)2

− 1

4
∆(x, y) = 1 − x + y

2
+

1

6
y(1 + x).

Suppose that

|1 − ζ1|2 >
4

3
,

or

y < −2 + 3x

2 − x
.

Then
1

3
(x + 4 −

√

8(2 − x)(1 + x)) < −2 + 3x

2 − x
,

or

(2 − x)(x + 4 −
√

8(2 − x)(1 + x)) > 14 + 11x − x2,

which is impossible for −1 ≤ x ≤ 1.

2) z1 is a complex extremal zero of p. In this case z2 = z1 is also a zero
of p. We may suppose that

z1 = −α + i
√

1 − α2, z2 = −α − i
√

1 − α2, α ∈ [0, 1).

Then, the circles C(z1, 2/
√

3) and C(z2, 2/
√

3) cross the positive real axis in the
point

x = α +
√

α2 + 1/3 > (1 − α)/2,

therefore there is at least one zero in every one of the disks D(z1, 2/
√

3) and
D(z2, 2/

√
3). This contradicts to the supposition that ρ(AP4);AP ′′

4 ) > 2/
√

3. �

3.2.4. Deviation of A(p) from A(p(n−2)). It is trivial that

ρ(A(Pn);A(P(n−1)
n )) = 2 − 2

n
.

An extremal polynomial is p(z) = (z − 1)(z + 1)n−1.
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Lemma 7. For n ≥ 5, the inequalities

ρ(A(Pn);A(P(n−2)
n )) ≥















2
n − 1

n + 1
for n odd,

1 +

√

(n − 2)(n − 4)

n(n + 2)
for n even

hold.

P r o o f. For n = 2m + 1, consider the polynomial

p(z) =

(

z2 +
2m

m + 1
z + 1

)m

(z − 1)(16)

with

p(2m−1)(z) =
(2m + 1)!

2

(

z +
m − 1

m + 1

)2

.

p(2m−1) has a double zero ζ1 = ζ2 = −(m − 1)/(m + 1) and

ρ(A(p);A(p(n−2))) = |1 − ζ1| =
2m

m + 1
= 2

n − 1

n + 1
.

For n = 2m + 2, consider the polynomial

p(z) =

(

z2 + 2

√

m2 − 1

m(m + 2)
z + 1

)m

(z2 − 1)(17)

with

p(2m)(z) =
(2m + 2)!

2

(

z +

√

m(m − 1)

(m + 1)(m + 2)

)2

.

p(2m) has a double zero ζ1 = ζ2 = −
√

m(m − 1)/(m + 1)(m + 2) and

ρ(A(p);A(p(n−2))) = |1 − ζ1| = 1 +

√

(n − 2)(n − 4)

n(n + 2)
. �

We conjecture that

ρ(A(Pn);A(P(n−2)
n )) =



















2
n − 1

n + 1
for n odd,

1 +

√

(n − 2)(n − 4)

n(n + 2)
for n even
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Observe that the polynomials (16) and (17) agree with Conjecture 4.

3.2.5. Deviation of A(p) from H(p(s)). From (7) and Lemma 1 it
follows that for every p ∈ Pn,

ρ(A(p);A(p(s))) ≥ ρ(A(p);H(p(s))).(18)

Then, we formulate a weaker conjecture than Conjecture 3.

Conjecture 9. For every n ≥ s + 1, the following inequalities hold:

ρ(A(Pn);H(P(s)
n )) ≤ 2s

s + 1
,(19)

s = 1, 2, . . . , n − 1.

Observe that Conjecture 9 follows from Conjecture 3 and Conjecture 4.
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Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Sin-
gapore, 1994.



Generalization of a Conjecture in the Geometry of Polynomials 303

[38] B. E. Petersen. Convex Hull, Lucas Theorem, Aziz’s Theorem and the
Sendov–Ilieff Conjecture. Feb. 29, 2000.
http://www.peak.org/~petersen/maple/maple_notes.html

[39] P. Pflug, G. Schmieder. Remarks on Ilieff–Sendov Problem. Annals
Univ. Maria Curie-Sklodowska Lublin, Poland XLVIII, 9, (1994), 98–105.

[40] D. Phelps, R. S. Rodriguez. Some properties of extremal polynomials
for the Ilieff conjecture. Kodai Math. J. 24 (1972), 172–175.

[41] Q. I. Rahman. On the zeroes of a polynomial and its derivative. Pacific J.
Math. 41 (1972), 525–528.

[42] Q. I. Rahman, Q. M. Tariq. On a problem related to the conjecture of
Sendov about the critical points of a polynomial. Canad. Math. Bull. 30, 4

(1987), 476–480.

[43] Th. M. Rassias. Zeros of polynomials and their derivative. Rev. Roumaine
Math. Purres Appl. 36 (1991), 441–448.

[44] Z. Rubinstein. On a problem of Ilieff. Pacific J. Math. 26 (1968), 159–161.

[45] E. B. Saff, J. B. Twomey. A note on the location of critical points of
polynomials. Proc. Amer. Math. Soc. 27, 2 (1971), 303–308.

[46] G. Schmeisser. Bemerkungen zu einer Vermutung von Ilieff. Math. Z. 111
(1969), 121–125.

[47] G. Schmeisser. Zur Lage der Kritichen puncte eines polynoms. Rend. Sem.
Mat. Univ. Padova 46 (1971), 165–173.

[48] G. Schmeisser. On Ilieff’s conjecture. Math. Z. 156 (1977), 165–173.

[49] Bl. Sendov. Hausdorff Geometry of Polynomials. East J. Approx. 7, 2

(2001), 1–56.
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