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Abstract. This paper is a survey which also contains some new results on
the nonlinear approximation with regard to a basis or, more generally, with
regard to a minimal system. Approximation takes place in a Banach or in
a quasi-Banach space. The last decade was very successful in studying non-
linear approximation. This was motivated by numerous applications. Non-
linear approximation is important in applications because of its increased
efficiency. Two types of nonlinear approximation are employed frequently
in applications. Adaptive methods are used in PDE solvers. The m-term
approximation considered here is used in image and signal processing as well
as the design of neural networks. The basic idea behind nonlinear approx-
imation is that the elements used in the approximation do not come from
a fixed linear space but are allowed to depend on the function being ap-
proximated. The fundamental question of nonlinear approximation is how
to construct good methods (algorithms) of nonlinear approximation. In this
paper we discuss greedy type and thresholding type algorithms.
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1. Greedy Algorithms with regard to bases. Let a Banach space
X with a basis Ψ = {ψk}

∞
k=1, be given. We consider the following theoretical

greedy algorithm. For a given element f ∈ X we consider the expansion

(1.1) f =

∞
∑

k=1

ck(f,Ψ)ψk.

For an element f ∈ X we call a permutation ρ, ρ(j) = kj , j = 1, 2, . . ., of the
positive integers decreasing and write ρ ∈ D(f) if

(1.2) |ck1
(f,Ψ)| ≥ |ck2

(f,Ψ)| ≥ . . . .

In the case of strict inequalities here D(f) consists of only one permutation. We
define them-th greedy approximant of f with regard to the basis Ψ corresponding
to a permutation ρ ∈ D(f) by formula

Gm(f) := Gm(f,Ψ) := Gm(f,Ψ, ρ) :=

m
∑

j=1

ckj
(f,Ψ)ψkj

.

We note that there is another natural greedy type algorithm based on ordering
‖ck(f,Ψ)ψk‖ instead of ordering absolute values of coefficients. Denote Λm(f) a
set of indices such that

min
k∈Λm(f)

‖ck(f,Ψ)ψk‖ ≥ max
k/∈Λm(f)

‖ck(f,Ψ)ψk‖.

We define GX
m(f,Ψ) by formula

GX
m(f,Ψ) := SΛm(f)(f,Ψ), where SE(f) := SE(f,Ψ) :=

∑

k∈E

ck(f,Ψ)ψk.

It is clear that in the case of normalized basis (‖ψk‖ = 1, k = 1, 2, . . .) the above
two greedy algorithms coincide.

In the case X = Lp we will write p instead of Lp in notations. It is a sim-
ple algorithm which describes the theoretical scheme (it is not computationally
ready) for m-term approximation of an element f . We will call this algorithm
Thresholding Greedy Algorithm (TGA). In order to understand the efficiency of
this algorithm we compare its accuracy with the best possible when an approx-
imant is a linear combination of m terms from Ψ. We define the best m-term
approximation with regard to Ψ as follows

σm(f) := σm(f,Ψ)X := inf
ck,Λ

∥

∥

∥

∥

f −
∑

k∈Λ

ckψk

∥

∥

∥

∥

X

,
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where inf is taken over coefficients ck and sets of indices Λ with cardinality |Λ| =
m. The best we can achieve with the algorithm Gm is

‖f −Gm(f,Ψ, ρ)‖X = σm(f,Ψ)X ,

or a little weaker

(1.3) ‖f −Gm(f,Ψ, ρ)‖X ≤ Gσm(f,Ψ)X

for all elements f ∈ X with a constant G = C(X,Ψ) independent of f and m. It
is clear that in the case X = H is a Hilbert space and Ψ is an orthonormal basis
we have

‖f −Gm(f,Ψ, ρ)‖H = σm(f,Ψ)H .

Let us begin our discussion by an important class of bases: wavelet type
bases. Denote H := {Hk}

∞
k=1 the Haar basis on [0, 1) normalized in L2(0, 1). We

denote by Hp := {Hk,p}
∞
k=1 the Haar basis H renormalized in Lp(0, 1). We will use

the following definition of the Lp-equivalence of bases. We say that Ψ = {ψk}
∞
k=1

is Lp-equivalent to Φ = {φk}
∞
k=1 if for any finite set Λ and any coefficients ck,

k ∈ Λ, we have

C1(p,Ψ,Φ)

∥

∥

∥

∥

∑

k∈Λ

ckφk

∥

∥

∥

∥

p

≤

∥

∥

∥

∥

∑

k∈Λ

ckψk

∥

∥

∥

∥

p

≤ C2(p,Ψ,Φ)

∥

∥

∥

∥

∑

k∈Λ

ckφk

∥

∥

∥

∥

p

with two positive constants C1(p,Ψ,Φ), C2(p,Ψ,Φ) which may depend on p, Ψ,
and Φ. For sufficient conditions on Ψ to be Lp-equivalent to H see [9] and [5].
In particular, it is known that all reasonable univariate wavelet type bases are
Lp-equivalent to H for 1 < p <∞. We proved the following theorem in [21].

Theorem 1.1. Let 1 < p < ∞ and a basis Ψ be Lp-equivalent to the
Haar basis H. Then for any f ∈ Lp(0, 1) we have

‖f −Gp
m(f,Ψ)‖p ≤ C(p,Ψ)σm(f,Ψ)p

with a constant C(p,Ψ) independent of f and m.

By a simple renormalization argument one obtains the following version
of Theorem 1.1.

Theorem 1.1A. Let 1 < p < ∞ and a basis Ψ be Lp-equivalent to the
Haar basis Hp. Then for any f ∈ Lp(0, 1) and any ρ ∈ D(f) we have

‖f −Gm(f,Ψ, ρ)‖p ≤ C(p,Ψ)σm(f,Ψ)p

with a constant C(p,Ψ) independent of f , ρ, and m.
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We note that [21] also contains a generalization of Theorem 1.1 to the mul-
tivariate Haar basis obtained by the multiresolution analysis procedure. These
theorems motivated us to consider the general setting of greedy approximation
in Banach spaces. We concentrated on studying bases which satisfy (1.3) for all
individual functions.

Definition 1.1. We call a basis Ψ greedy basis if for every f ∈ X there
exists a permutation ρ ∈ D(f) such that

(1.4) ‖f −Gm(f,Ψ, ρ)‖X ≤ Gσm(f,Ψ)X

holds with a constant independent of f , m.

The following proposition has been proved in [15].

Proposition 1.1. If Ψ is a greedy basis then (1.4) holds for any permu-
tation ρ ∈ D(f).

Theorem 1.1A shows that each basis Ψ which is Lp-equivalent to the
univariate Haar basis Hp is a greedy basis for Lp(0, 1), 1 < p < ∞. We note
that in the case of Hilbert space each orthonormal basis is a greedy basis with a
constant G = 1 (see (1.4)).

We give now the definitions of unconditional and democratic bases.

Definition 1.2. A basis Ψ = {ψk}
∞
k=1 of a Banach space X is said

to be unconditional if for every choice of signs θ = {θk}
∞
k=1, θk = 1 or −1,

k = 1, 2, . . . , the linear operator Mθ defined by Mθ

(

∞
∑

k=1

akψk

)

=
∞
∑

k=1

akθkψk is a

bounded operator from X into X.

Definition 1.3. We say that a basis Ψ = {ψk}
∞
k=1 is a democratic basis

for X if there exists a constant D := D(X,Ψ) such that for any two finite sets

of indices P and Q with the same cardinality |P | = |Q| we have

∥

∥

∥

∥

∑

k∈P

ψk

∥

∥

∥

∥

≤

D

∥

∥

∥

∥

∥

∑

k∈Q

ψk

∥

∥

∥

∥

∥

.

We proved in [15] the following theorem.

Theorem 1.2. A basis is greedy if and only if it is unconditional and
democratic.

This theorem gives a characterization of greedy bases. Further investiga-
tions ([22, 1, 13, 10]) showed that the concept of greedy bases is very useful in
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direct and inverse theorems of nonlinear approximation and also in applications
in statistics. The papers [15, 21], contain other results on greedy bases.

Let us discuss a question of weakening the property of a basis of being a
greedy basis. We begin with a concept of quasi-greedy basis.

Definition 1.4. We call a basis Ψ quasi-greedy basis if for every f ∈ X
and every permutation ρ ∈ D(f) we have

(1.5) ‖Gm(f,Ψ, ρ)‖X ≤ C‖f‖X

with a constant C independent of f , m, and ρ.

It is clear that (1.5) is weaker then (1.4). P. Wojtaszczyk [32] proved the
following theorem.

Theorem 1.3. A basis Ψ is quasi-greedy if and only if for any f ∈ X
and any ρ ∈ D(f) we have

(1.6) ‖f −Gm(f,Ψ, ρ)‖ → 0 as m→ ∞.

We proceed to an intermediate concept of almost greedy basis. This
concept has been introduced and studied in [6]. Let

f =

∞
∑

k=1

ck(f)ψk.

We define the following expansional best m-term approximation of f

σ̃m(f) := σ̃m(f,Ψ) := infΛ,|Λ|=m

∥

∥

∥

∥

f −
∑

k∈Λ

ck(f)ψk

∥

∥

∥

∥

.

It is clear that

σm(f,Ψ) ≤ σ̃m(f,Ψ).

It is also clear that for an unconditional basis Ψ we have

σ̃m(f,Ψ) ≤ Cσm(f,Ψ).

Definition 1.5. We call a basis Ψ almost greedy basis if for every f ∈ X
there exists a permutation ρ ∈ D(f) such that

(1.7) ‖f −Gm(f,Ψ, ρ)‖X ≤ Cσ̃m(f,Ψ)X

holds with a constant independent of f , m.
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The following proposition follows from the proof of Theorem 3.3 of [6]
(see Theorem 1.4 below).

Proposition 1.2. If Ψ is an almost greedy basis then (1.7) holds for any
permutation ρ ∈ D(f).

The following characterization of almost greedy bases has been obtained
in [6].

Theorem 1.4. Suppose Ψ is a basis of a Banach space. The following
are equivalent:

A. Ψ is almost greedy.

B. Ψ is quasi-greedy and democratic.

C. For any (respectively, every) λ > 1 there is a constant C = Cλ such
that

‖f −G[λm](f,Ψ)‖ ≤ Cλσm(f,Ψ).

We will prove an estimate for σ̃n(f,Ψ) in terms of σm(f,Ψ) for a quasi-
greedy basis Ψ. For a basis Ψ we define the fundamental function

ϕ(m) := sup
|A|≤m

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

.

We also need the following function

φ(m) := inf
|A|=m

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

.

It will be convenient to define the quasi-greedy constantK to be the least constant
such that

‖Gm(f)‖ ≤ K‖f‖ and ‖f −Gm(f)‖ ≤ K‖f‖, f ∈ X.

We will prove an inequality that has been obtained in [6].

Theorem 1.5. Let Ψ be a quasi-greedy basis. Then for any m and r
there exists a set E, |E| ≤ m+ r such that

‖f − SE(f)‖ ≤ C(1 +
ϕ(m)

φ(r + 1)
)σm(f).
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P r o o f. If σm(f) = 0 then f =
∑

k∈A

ck(f)ψk, |A| ≤ m and, therefore,

SA(f) = f . Let σm(f) 6= 0 and A be a set, |A| = m, such that

(1.8) ‖f − pm(f)‖ ≤ 2σm(f), pm(f) =
∑

k∈A

bkψk.

Denote g := f − pm(f). Let B, |B| = r, be such that

Gr(g) =
∑

k∈B

ck(g)ψk.

Consider

(1.9) f − SA∪B(f) = g − SA∪B(g) = g − SB(g) − SA\B(g).

By the assumption that Ψ is quasi-greedy and by the definition of B we get

(1.10) ‖g − SB(g)‖ ≤ C1‖g‖ ≤ 2C1σm(f).

Let us estimate ‖SA\B(g)‖. By Lemma 2.2 from [6] we get

max
k∈A\B

|ck(g)| ≤ 4K2(φ(r + 1))−1‖g‖.

Next, by Lemma 2.1 from [6] we obtain

(1.11) ‖SA\B(g)‖ ≤ (2K)3ϕ(m)φ(r + 1)−1‖g‖.

Combining (1.10) and (1.11) we derive from (1.9) for E := A ∪B

‖f − SE(f)‖ ≤ C(1 +
ϕ(m)

φ(r + 1)
)σm(f).

Theorem 1.5 is proved. �

2. Weak Greedy Algorithms with regard to bases. The follow-
ing weak type greedy algorithm was considered in [21]. Let t ∈ (0, 1] be a fixed
parameter. For a given basis Ψ and a given f ∈ X denote Λm(t) any set of m
indices such that

(2.1) min
k∈Λm(t)

|ck(f,Ψ)| ≥ t max
k/∈Λm(t)

|ck(f,Ψ)|

and define

Gt
m(f) := Gt

m(f,Ψ) :=
∑

k∈Λm(t)

ck(f,Ψ)ψk.
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We call it the Weak Thresholding Greedy Algorithm (WTGA) with the weakness
sequence {t}. It was proved in [21] that in the case of X = Lp, 1 < p < ∞, and
Ψ is the Haar system Hp normalized in Lp we have for any f ∈ Lp

(2.2) ‖f −Gt
m(f,Hp)‖Lp ≤ C(p, t)σm(f,Hp)Lp .

We note here that the proof of (2.1) from [21] works for any greedy basis instead
of the Haar system Hp. Thus for any greedy basis Ψ of a Banach space X and
any t ∈ (0, 1] we have for each f ∈ X

(2.3) ‖f −Gt
m(f,Ψ)‖X ≤ C(Ψ, t)σm(f,Ψ)X .

This means that for greedy bases we have more flexibility in constructing near
best m-term approximants.

We now consider the Weak Thresholding Greedy Algorithm with regard to
a quasi-greedy basis Ψ. The following theorem is essentially due to Wojtaszczyk
[32].

Theorem 2.1. Let Ψ be a quasi-greedy basis for a Banach space X.
Then for any fixed t ∈ (0, 1] we have for each f ∈ X that

Gt
m(f,Ψ) → f as m→ ∞.

P r o o f. Let

Gt
m(f,Ψ) =

∑

j∈Λm(t)

cj(f)ψj = SΛm(t)(f,Ψ).

Denote

α := max
j /∈Λm(t)

|cj(f)|

and

Λ1
m := {j : |cj(f)| > α} ⊆ Λm(t),

Λ2
m := {j : |cj(f)| ≥ tα} ⊇ Λm(t).

Thus we have

SΛm(t)(f,Ψ) = SΛ1
m

(f,Ψ) + SΛm(t)\Λ1
m

(f,Ψ).

The assumption that Ψ is quasi-greedy implies that

SΛ1
m

(f,Ψ) → f as m→ ∞.
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We will prove that

‖SΛm(t)\Λ1
m

(f,Ψ)‖ → 0 as m→ ∞.

We note that

(2.4) SΛm(t)\Λ1
m

(f,Ψ) = SΛm(t)\Λ1
m

(

∑

j:tα≤|cj(f)|≤α

cj(f)ψj,Ψ

)

.

�

We need a lemma on properties of quasi-greedy systems.

Lemma 2.1. Let Ψ be a quasi-greedy basis. Then for any two finite sets
of indices A ⊆ B and coefficients 0 < t ≤ |aj | ≤ 1, j ∈ B, we have

∥

∥

∥

∥

∥

∑

j∈A
ajψj

∥

∥

∥

∥

∥

≤ C(X,Ψ, t)

∥

∥

∥

∥

∥

∑

j∈B
ajψj

∥

∥

∥

∥

∥

.

P r o o f. The proof is based on the following known lemma (see [6]) that
is essentially due to Wojtaszczyk [32]. �

Lemma 2.2. Suppose Ψ is a quasi-greedy basis with a quasi-greedy con-
stant K. Then for any real numbers aj and any finite set of indices P we have

(4K2)−1 min
j∈P

|aj |

∥

∥

∥

∥

∥

∑

j∈P
ψj

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∑

j∈P
ajψj

∥

∥

∥

∥

∥

≤ 2K max
j∈P

|aj |

∥

∥

∥

∥

∥

∑

j∈P
ψj

∥

∥

∥

∥

∥

.

Using this lemma, we get
∥

∥

∥

∥

∥

∑

j∈A
ajψj

∥

∥

∥

∥

∥

≤ 2K

∥

∥

∥

∥

∥

∑

j∈A
ψj

∥

∥

∥

∥

∥

≤ (2K)2

∥

∥

∥

∥

∥

∑

j∈B
ψj

∥

∥

∥

∥

∥

≤ (2K)4t−1

∥

∥

∥

∥

∥

∑

j∈B
ajψj

∥

∥

∥

∥

∥

.

This proves Lemma 2.1.

We continue the proof of Theorem 2.1. Denote

fα :=
∑

j:tα≤|cj(f)|≤α

cj(f)ψj.

Then by Lemma 2.1 we get from (2.4)

‖SΛm(t)\Λ1
m

(f,Ψ)‖ ≤ C‖fα‖.

It remains to remark that α→ 0 as m→ ∞ and fα → 0 as α→ 0.
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We note that the mth greedy approximant Gm(f,Ψ) changes if we renor-
malize the system {ψn} (replace it by a system {λnψn}). This gives us more
flexibility in adjusting a given system {ψn} for greedy approximation.

Let us now proceed to an almost greedy basis Ψ. Similarly to the proof
of Theorem 2.1 one can prove the following lemma.

Lemma 2.3. Let Ψ be a quasi-greedy basis. Then for a fixed t ∈ (0, 1]
and any m we have for any f ∈ X

‖Gt
m(f,Ψ)‖ ≤ C(t)‖f‖.

Theorem 2.2. Let Ψ be an almost greedy basis. Then for t ∈ (0, 1] we
have for any m

(2.5) ‖f −Gt
m(f)‖ ≤ C(t)σ̃m(f).

P r o o f. Take any ǫ > 0 and find P , |P | = m such that

‖f − SP (f)‖ ≤ σ̃m(f) + ǫ.

Let Q := Λm(t) with Λm(t) from the definition of Gt
m(f). Then

(2.6) ‖f −Gt
m(f)‖ ≤ ‖f − SP (f)‖ + ‖SP (f) − SQ(f)‖.

We have

(2.7) SP (f) − SQ(f) = SP\Q(f) − SQ\P (f).

Let us estimate first ‖SQ\P (f)‖. Denote f1 := f − SP (f). Then

SQ\P (f) = SQ\P (f1).

Next

min
k∈Q\P

|ck(f1)| = min
k∈Q\P

|ck(f)| ≥ min
k∈Q

|ck(f)| ≥

tmax
k/∈Q

|ck(f)| ≥ tmax
k/∈Q

|ck(f1)| = t max
k/∈Q\P

|ck(f1)|.

Thus Q \ P = Λn(t) for f1 with n := |Q \ P |. By Lemma 2.3 we have

(2.8) ‖SQ\P (f)‖ ≤ C1(t)‖f1‖.
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We now estimate ‖SP\Q(f)‖. From the definition of Q we easily derive

(2.9) at ≤ b where a := max
k∈P\Q

|ck(f)|, b := min
k∈Q\P

|ck(f)|.

By Lemma 2.2 (see Lemma 2.1 from [6])

(2.10) ‖SP\Q(f)‖ ≤ 2Ka

∥

∥

∥

∥

∥

∑

k∈P\Q

ψk

∥

∥

∥

∥

∥

and (see Lemma 2.2 from [6])

(2.11) ‖SQ\P (f)‖ ≥ (4K2)−1b

∥

∥

∥

∥

∥

∑

k∈Q\P

ψk

∥

∥

∥

∥

∥

.

By Theorem 1.4 an almost greedy basis is a democratic basis. Thus we get

(2.12)

∥

∥

∥

∥

∥

∑

k∈P\Q

ψk

∥

∥

∥

∥

∥

≤ D

∥

∥

∥

∥

∥

∑

k∈Q\P

ψk

∥

∥

∥

∥

∥

.

Combining (2.6)–(2.12) we obtain (2.5). Theorem 2.2 is proved. �

We now discuss a stability of greedy type property of a basis. Let 0 <
a ≤ λk ≤ b <∞, k = 1, 2, . . . and for a basis Ψ = {ψk} consider Ψλ := {λkψk}.

Theorem 2.3. Let a basis Ψ have one of the properties
1. Greedy.
2. Almost greedy.
3. Quasi-greedy.
Then the basis Ψλ has the same property.

P r o o f. Let f ∈ X and

f =
∑

k

ck(f)ψk =
∑

k

ck(f)λ−1
k λkψk.

Consider

Gm(f,Ψλ) =
∑

k∈Λm

(ck(f)λ−1
k )λkψk.

Then we have

min
k∈Λm

|ck(f)| ≥ a min
k∈Λm

|ck(f)|λ−1
k ≥ a max

k/∈Λm

|ck(f)|λ−1
k ≥

a

b
max
k/∈Λm

|ck(f)|.

Therefore, the set Λm can be interpreted as a Λm(t) with t = a/b with regard to
the basis Ψ. It remains to apply the corresponding results for Gt

m(f,Ψ): (2.3)
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in the case 1, Theorem 2.2 in the case 2, and Theorem 2.1 in the case 3. This
completes the proof of Theorem 2.3. �

In the paper [11] the following modification of the above weak type greedy
algorithm in a way of further weakening the restriction (2.1) has been studied.
We call this modification the Weak Thresholding Greedy Algorithm (WTGA)
with a weakness sequence τ = {tk}. Let a weakness sequence τ := {tk}

∞
k=1,

tk ∈ [0, 1], k = 1, . . . be given. We define the WTGA by induction. We take an
element f ∈ X and at the first step we let

Λ1(τ) := {n1}; Gτ
1(f,Ψ) := cn1

ψn1

with n1 any satisfying

|cn1
| ≥ t1 max

n
|cn|

where we denote for brevity cn := cn(f,Ψ). Assume we have already defined

Gτ
m−1(f,Ψ) := GX,τ

m−1(f,Ψ) :=
∑

n∈Λm−1(τ)

cnψn.

Then at the mth step we define

Λm(τ) := Λm−1(τ) ∪ {nm}; Gτ
m(f,Ψ) := GX,τ

m (f,Ψ) :=
∑

n∈Λm(τ)

cnψn

with nm /∈ Λm−1(τ) any satisfying

|cnm | ≥ tm max
n/∈Λm−1(τ)

|cn|.

Thus for an f ∈ X the WTGA builds a rearrangement of a subsequence of the
expansion (1.1). If Ψ is an unconditional basis then always Gτ

m(f,Ψ) → f∗. It is
clear that in this case f∗ = f if and only if the sequence {nk}

∞
k=1 contains indices

of all nonzero cn(f,Ψ). We say that the WTGA corresponding to Ψ and τ is
convergent (converges) if for any realization Gτ

m(f,Ψ) we have

‖f −Gτ
m(f,Ψ)‖ → 0 as m→ ∞

for all f ∈ X.
In [11] the following three theorems on convergence of the WTGA have

been proved. The first one deals with an arbitrary Banach space X and any basis
Ψ.

Theorem 2.4. Let X be a Banach space with a normalized basis Ψ.
Let τ = {tn, n ≥ 1} be a weakness sequence. The following condition (D) is a
necessary condition for the WTGA corresponding to Ψ and τ to be convergent.
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(D) For each subsequence {nk, k ≥ 1} of different indices, the series
∞
∑

k=1

tkψnk
diverges in X.

If the basis Ψ is unconditional, then the above condition (D) is also a
sufficient condition for the WTGA corresponding to Ψ and τ to be convergent.

In the case X = Lp([0, 1]
d) one can derive from Theorem 2.4 a more

specific condition in terms of τ (see [11]).

Theorem 2.5. Let 2 ≤ p < ∞, d ≥ 1 and let Ψ be a normalized
unconditional basis in Lp([0, 1]

d). Let τ = {tn, n ≥ 1} be a weakness sequence.
Then the WTGA corresponding to Ψ and τ converges if and only if τ 6∈ lp.

There is no simple criterion in terms of τ in the case X = Lp([0, 1]
d),

1 < p < 2 and arbitrary unconditional basis Ψ. In this case [11] contains the
following result for the multivariate Haar basis Hd

p defined as the tensor product

of the univariare Haar bases: Hd
p := Hp × · · · × Hp. To formulate the result,

introduce the following notation. For a sequence {tk, k ≥ 1} of nonnegative
numbers such that lim

k→∞
tk = 0, {t∗k, k ≥ 1} is a nonincreasing rearrangement of

the subsequence {tnk
, k ≥ 1} consisting of positive elements of {tk, k ≥ 1}.

Theorem 2.6. Let d ≥ 1 and 1 < p < 2. The WTGA corresponding to
Hd

p and a weakness sequence τ converges in Lp([0, 1]
d) if and only if one of the

following conditions is satisfied:

(i) The sequence τ = {tk} does not converge to 0.

(ii) lim
k→∞

tk = 0 and

(2.13)

∞
∑

k=1

(t∗k)
2(k(log k)(1−d))2/p−1 = ∞.

Along with convergence of the WTGA efficiency of approximation by
Gτ

m(·,Ψ) has been studied in [11]. The accuracy of the WTGA was compared with
best m-term approximation. In the case of greedy basis and τ = {t}, t ∈ (0, 1]
the relation (2.3) shows that Gτ

m(·,Ψ) realizes near best m-term approximation.
There are two natural ways of adapting (2.3) to the case of nongreedy basis or
to the case of general weakness sequence. In the first way (see [24, 22, 32, 18])
we write (2.3) in the form

‖f −Gτ
m(f,Ψ)‖ ≤ C(m, τ,Ψ)σm(f,Ψ)

and look for the best (in the sense of order) constant C(m, τ,Ψ).
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We now formulate the correspoding results from [11]. For a basis Ψ we
define the fundamental function ϕ(m) and the function φ(m) like in Section 1.
We also need the following function

ϕs(m) := sup
|A|=m

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

.

It is clear that

ϕ(m) = sup
n≤m

ϕs(n).

We now introduce some characteristics of a basis with respect to a weakness
sequence τ . For a subset V ⊆ [1,m] of integers we define

φ(τ,m, V ) := inf
{ki}

∥

∥

∥

∥

∑

i∈V
tiψki

∥

∥

∥

∥

where inf is taken over all sets {ki} of different indices. For two integers 1 ≤ n ≤ m
we define

φ(τ,m, n) := inf
|V |=n,V ⊆[1,m]

φ(τ,m, V ),

and finally

µ(τ,m) := sup
n≤m

ϕs(n)

φ(τ,m, n)
.

The following result has been proved in [11].

Theorem 2.7. Let Ψ be a normalized unconditional basis for X. Then
we have

‖f −Gτ
m(f,Ψ)‖ ≤ C(Ψ)µ(τ,m)σm(f,Ψ).

In Theorem 2.7 we compare efficiency of Gτ
m(·,Ψ) with σm(·,Ψ). It is

known in approximation theory that sometimes it is convenient to compare ef-
ficiency of an approximating operator which is characterized by m parameters
with best possible approximation corresponding to smaller number of parame-
ters n ≤ m. We use this idea in approximation by the WTGA. Let us discuss a
setting (see [11]) when we write (2.3) in the form

‖f −Gτ
vm

(f,Ψ)‖ ≤ C(Ψ)σm(f,Ψ)
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and look for the best (in the sense of order) sequence {vm} that is determined by
the weakness sequence τ and the basis Ψ. We need some more notation. Define

φ(τ,N) := φ(τ,N, [1, N ]) = inf
k1,...,kN

∥

∥

∥

∥

∥

N
∑

j=1
tjψkj

∥

∥

∥

∥

∥

.

Assume that φ(τ,N) → ∞ as N → ∞ and denote vm the smallest N satisfying

φ(τ,N) ≥ 2ϕ(m).

There is the following result ([11]) in this case.

Theorem 2.8. For any normalized unconditional basis Ψ we have

‖f −Gτ
vm

(f,Ψ)‖ ≤ C(Ψ)σm(f,Ψ).

It is interesting to compare this result with some recent results from [6]. It
has been established in [6] (see Theorem 1.4 of present paper) that the inequalities

(2.14) ‖f −G[λm](f,Ψ)‖ ≤ C(Ψ, λ)σm(f,Ψ)

with fixed λ > 1 are characteristic for a class of almost greedy bases. It is clear
that each greedy basis is an almost greedy basis. There is an example (see [15,
sections 3.3, 3.4]) of almost greedy basis that is not a greedy basis. This means
that λ > 1 needed for (2.14) can not be replaced by λ ≥ 1.

3. Thresholding type approximation with regard to minimal

systems. Let X be a quasi-Banach space (real or complex) with the quasi-norm
‖ · ‖ such that for all x, y ∈ X we have ‖x+ y‖ ≤ α(‖x‖+ ‖y‖) and ‖tx‖ = |t|‖x‖.
It is well-known (see [12, Lemma 1.1]) that there is a p, 0 < p ≤ 1, such that

(3.1)

∥

∥

∥

∥

∥

∑

n

xn

∥

∥

∥

∥

∥

≤ 41/p

(

∑

n

‖xn‖
p

)1/p

.

Let {en} ⊂ X be a complete minimal system in X with the conjugate (dual)
system {e∗n} ⊂ X∗. We assume that supn ‖e

∗
n‖ < ∞. This implies that for each

x ∈ X we have

(3.2) lim
n→∞

e∗n(x) = 0.

Any element x ∈ X has a formal expansion

(3.3) x ∼
∑

n

e∗n(x)en,
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and various types of convergence of the series (3.3) can be studied. In this section
we deal with greedy type approximations with regard to the system {en}. We
note that in this section we use the notations x and {en} for an element and for a
system respectively different from the notations f and Ψ in the previous sections
to emphasize that we are in a more general setting now. It will be convenient for
us to define a unique “greedy ordering” in this section. For any x ∈ X we define
the greedy ordering for x as the map ρ : N → N such that {j : e∗j (x) 6= 0} ⊂ ρ(N)
and so that if j < k then either |e∗ρ(j)(x)| > |e∗ρ(k)(x)| or |e∗ρ(j)(x)| = |e∗ρ(k)(x)| and

ρ(j) < ρ(k). The m-th greedy approximation is given by

Gm(x) := Gm(x, {en}) :=
m
∑

j=1

e∗ρ(j)(x)eρ(j).

The system {en} is called a quasi-greedy system (see [15]) if there exists
a constant C such that ‖Gm(x)‖ ≤ C‖x‖ for all x ∈ X and m ∈ N. Wojtaszchyk
[32] proved that these are precisely the systems for which lim

m→∞
Gm(x) = x for

all x. If a quasi-greedy system {en} is a basis then we say that {en} is a quasi-
greedy basis. It is clear that any unconditional basis is a quasi-greedy basis. We
note that there are conditional quasi-greedy bases {en} in some Banach spaces
[15, 32]. Hence, for such a basis {en} there exists a permutation of {en} which
forms a quasi-greedy system but not a basis. This remark justifies the study of
the class of quasi-greedy systems rather than the class of quasi-greedy bases.

Greedy approximations are close to thresholding approximations (some-
times they are called “thresholding greedy approximations”). Thresholding ap-
proximations are defined as

Tǫ(x) =
∑

|e∗j (x)|≥ε

e∗j (x)ej , ǫ > 0.

Clearly, for any ε > 0 there exists an m such that Tǫ(x) = Gm(x). Therefore, if
{en} is a quasi-greedy system then

(3.4) ∀x ∈ X lim
ε→0

Tǫ(x) = x.

Conversely, following Remark from [32, pages 296–297], it is easy to show that
the condition (3.4) implies that {en} is a quasi-greedy system.

Similarly to the above, one can define the Weak Thresholding Approxi-
mation. Fix t ∈ (0, 1). For ε > 0 denote

Dt,ε(x) := {j : tε ≤ |e∗j (x)| < ε}.
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The Weak Thresholding Approximations are defined as all possible sums

Tǫ,D(x) =
∑

|e∗j (x)|≥ε

e∗j (x)ej +
∑

j∈D

e∗j (x)ej ,

where D ⊆ Dt,ε(x). We say that the Weak Thresholding Algorithm converges for
x ∈ X and write x ∈WT{en}(t) if for any D(ǫ) ⊆ Dt,ǫ

lim
ε→0

Tǫ,D(ǫ)(x) = x.

It is clear that the above relation is equivalent to

lim
ε→0

sup
D⊆Dt,ε(x)

‖x− Tǫ,D(x)‖ = 0.

We proved in [16] (see Theorem 3.1 below) that the set WT{en}(t) does not
depend on t. Therefore, we can drop t from the notation: WT{en} = WT{en}(t).

It turns out that the Weak Thresholding Algorithm has more regularity
than the Thresholding Algorithm: we will see that the set WT{en} is linear. On
the other hand, by “weakening” the Thresholding Algorithm (making convergence
stronger) we do not narrow the convergence set too much. It is known that for
many natural classes of sets Y ⊆ X the convergence of Tǫ(x) to x for all x ∈ Y is
equivalent to the condition Y ⊆ WT{en}. In particular, it can be derived from
[32, Proposition 3] that the two above conditions are equivalent for Y = X.

We suppose that X and {en} satisfy the conditions stated in the beginning
of this section. The following two theorems have been proved in [16].

Theorem 3.1. Let t, t′ ∈ (0, 1), x ∈ X. Then the following conditions
are equivalent:
1) lim

ε→0
supD⊆Dt,ε(x) ‖Tǫ,D(x) − x‖ = 0;

2) lim
ε→0

Tǫ(x) = x and

(3.5) lim
ε→0

sup
D⊆Dt,ε(x)

∥

∥

∥

∥

∥

∑

j∈D

e∗j (x)ej

∥

∥

∥

∥

∥

= 0;

3) lim
ε→0

Tǫ(x) = x and

(3.6) lim
ε→0

sup
|aj |≤1(j∈Dt,ε(x))

∥

∥

∥

∥

∥

∑

j∈Dt,ε(x)

aje
∗
j (x)ej

∥

∥

∥

∥

∥

= 0;
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4) lim
ε→0

Tǫ(x) = x and

(3.7) lim
ε→0

sup
|bj |<ε(j:|e∗j (x)|≥ε)

∥

∥

∥

∥

∥

∑

j:|e∗j (x)|≥ε

bjej

∥

∥

∥

∥

∥

= 0;

5) lim
ε→0

sup
D⊆Dt′,ε(x)

‖Tǫ,D(x) − x‖ = 0.

So, the set WT{en}(t) defined above is indeed independent of t ∈ (0, 1).

Theorem 3.2. The set WT{en} is linear.

Let us discuss relations between the Weak Thresholding Algorithm Tǫ,D(x)
and the Weak Thresholding Greedy Algorithm Gt

m(x). We define Gt
m(x) with

regard to a minimal system {en} in the same way as it was defined for a basis Ψ.
For a given system {en} and t ∈ (0, 1] we denote for x ∈ X and m ∈ N by Wm(t)
any set of m indices such that

(3.8) min
j∈Wm(t)

|e∗j (x)| ≥ t max
j /∈Wm(t)

|e∗j (x)|

and define

Gt
m(x) := Gt

m(x, {en}) := SWm(t)(x) :=
∑

j∈Wm(t)

e∗j (x)ej .

It is clear that for any t ∈ (0, 1] and any D ⊆ Dt,ǫ(x) there exist m and Wm(t)
satisfying (3.8) such that

Tǫ,D(x) = SWm(t)(x).

Thus the convergence Gt
m(x) → x asm→ ∞ implies the convergence Tǫ,D(x) → x

as ǫ → ∞ for any t ∈ (0, 1]. We will now prove (see [16, Proposition 2.2]) that
for t ∈ (0, 1) the inverse is also true.

Proposition 3.1. Let t ∈ (0, 1) and x ∈ X. Then the following two
conditions are equivalent:

(3.9) lim
ǫ→0

sup
D⊆Dt,ǫ(x)

‖Tǫ,D(x) − x‖ = 0;

(3.10) lim
m→∞

‖Gt
m(x) − x‖ = 0

for any realization Gt
m(x).
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P r o o f. The implication (3.10) ⇒ (3.9) is simple and follows from a
remark preceding Proposition 3.1. We prove that (3.9) ⇒ (3.10). Denote

ǫm := max
j /∈Wm(t)

|e∗j (x)|.

Clearly ǫm → 0 as m→ ∞. We have

(3.11) Gt
m(x) = T2ǫm(x) +

∑

j∈Dm

e∗j (x)ej

with Dm having the following property: for any j ∈ Dm

tǫm ≤ |e∗j (x)| < 2ǫm.

Thus by condition 5) from Theorem 3.1 for t′ = t/2 we obtain (3.10).

Proposition 3.1 is now proved. �

Proposition 3.1 and Theorem 3.1 imply that the convergence set of the
Weak Thresholding Greedy Algorithm Gt

m(·) does not depend on t ∈ (0, 1) and
coincides with WT{en}. By Theorem 3.2 this set is a linear set.

Let us make a comment on the case t = 1 that is not covered by Proposi-
tion 3.1. It is clear that Tǫ(x) = Gm(x) with some m and, therefore, Gm(x) → x
as m → ∞ implies Tǫ(x) → x as ǫ → 0. It is also not difficult to understand
that in general Tǫ(x) → x as ǫ→ 0 does not imply Gm(x) → x as m→ ∞. This
can be done, for instance, considering the trigonometric system in the space Lp,
p 6= 2, and using the Rudin-Shapiro polynomials (see [24]). However, if for the
trigonometric system we put the Fourier coefficients with equal absolute values
in a natural order (say, lexicographic), then in the case 1 < p < ∞ by Riesz
theorem we obtain convergence of Gm(f) from convergence of Tǫ(f). Results
from the paper [14] show that the situation is different for p = 1. In this case the
natural order does not help to derive convergence of Gm(f) from convergence of
Tǫ(f).

Let us give an application of the results of this section for summation of
number series. A series

∑

n
an, an ∈ C, is said to A-converge to a number s ∈ C

if the following conditions hold:

(3.12) lim
ǫ→0+

∑

n:|an|≥ε

an = s;

(3.13) lim
ǫ→0+

ε|{n : |an| ≥ ε}| = 0.
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We shall write it as

(A)
∑

n

an = s.

The notion of A-convergent series has been studied in [30]; see also [31]. It is
similar to the well-known notion of the A-integral (see, e.g., [29]). We show that
A-convergence can be treated as weak thresholding convergence of number series.
Recall that c0 is the space of sequences convergent to zero. Namely,

c0 =
{

x = (x0, x1, . . .) : xn ∈ C, lim
n→∞

xn = 0
}

,

with the norm of x ∈ c0 defined as ‖x‖ = maxn |xn|. It is known that

c∗0 = l1 =

{

(x0, x1, . . .) : xn ∈ C, ‖x‖ =

∞
∑

n=0

|xn| <∞

}

.

Consider the system {en}n∈N ⊂ c0 defined as e0n = enn = 1, ejn = 0 for j 6= 0, n. It
is clear that {en} is a minimal system. It is also easy to see that {en} is complete
in c0. For instance, we have for the coordinate vectors un (un

n = 1, uj
n = 0, j 6= n),

n = 0, 1, . . .:
∥

∥

∥

∥

u0 −
1

m

m
∑

n=1
en

∥

∥

∥

∥

c0

≤ 1/m;

un = en − u0, n = 1, 2, . . . .

The elements e∗n of the conjugate system are e∗n = un, n = 1, 2, . . .. Thus, the
formal expansion (3.3) takes the form

x ∼
∞
∑

n=1

xnen.

Clearly, this expansion converges to x for x ∈ c0 satisfying the following condition

x0 =

∞
∑

n=1

xn.

Theorem 3.3. Define the system {en}n∈N ⊂ c0 as e0n = enn = 1, ejn = 0
for j 6= 0, n. Let

∑

n∈N

an be a number series, lim
n→∞

an = 0, s ∈ C, t ∈ (0, 1). Then

the following conditions are equivalent:
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1) the series
∑

n
an A-converges to s;

2) lim
ε→0

supD⊆Dt,ε
|Tǫ,D − s| = 0, where

Dt,ε = {j : tε ≤ |aj | < ε}, Tǫ,D =
∑

|aj |≥ε

aj +
∑

j∈D

aj ;

3) the element x ∈ c0 defined as x = (s, a1, a2, . . .) belongs to WT{en}.

The following corollary of Theorems 3.2 and 3.3 has been proved in [30].

Corollary 3.1. The set of A-convergent series is linear. Moreover,

(A)
∑

n

(an + bn) = (A)
∑

n

an + (A)
∑

n

bn.

We have already made some remarks justifying consideration of minimal
systems instead of bases in the study of greedy type algorithms. We will make
a remark (see [16]) showing that the step from Banach spaces to quasi-Banach
spaces is also natural in studying greedy type algorithms.

Remark 3.1. One can check (see the proof of Theorem 3.1 in [16]) that
for any t ∈ (0, 1) the quasi-norm ‖| · ‖|t in the space Y = WT{en} ∈ c0 defined as

‖|x‖|t := sup
ε

sup
D⊆Dt,ε(x)

‖Tǫ,D(x)‖

is equivalent to the quasi-norm

‖|x‖| := max(|x0|, sup
ε
ε|{n ≥ 1 : |xn| ≥ ε}|).

Also, a quasi-norm in the space Y can be treated as a quasi-norm in the space of
A-convergent series.

Theorem 3.4. The quasi-norm ‖| · ‖| in the space Y = WT{en} ∈ c0 is
not equivalent to any norm.

P r o o f. It is sufficient to show that for any M > 0 there exist a positive
integer m and elements x1, . . . , xm from Y such that

(3.14) ‖|xj‖| ≤ 1 (j = 1, . . . ,m)

and

(3.15)

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

1

m

m
∑

j=1

xj

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

> M.
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Take an even m ∈ N and set xn
j = 0 for n > m, xn

j = (−1)n/k for 1 ≤ n ≤ m

where k ∈ {1, . . . ,m} is defined as k ≡ n + j(modm), x0
j =

m
∑

n=1
xn

j . It is easy to

see that all the elements xj = (x0
j , x

1
j , . . .) satisfy (3.14). Further, for the element

x =
1

m

m
∑

j=1
xj = (x0, x1, . . .) we have

|xn| =
1

m

m
∑

k=1

1/k (n = 1, . . . ,m).

Therefore, ‖|x‖| ≥
m
∑

k=1

1/k, and (3.15) holds for sufficiently large m. The proof

of Theorem 3.4 is complete. �

The reader can also find in [16, S.4] applications of these results for study-
ing A-convergence of trigonometric series.
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