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Abstract. Attempts at extending spline subdivision schemes to operate
on compact sets are reviewed. The aim is to develop a procedure for ap-
proximating a set-valued function with compact images from a finite set of
its samples. This is motivated by the problem of reconstructing a 3D object
from a finite set of its parallel cross sections. The first attempt is limited to
the case of convex sets, where the Minkowski sum of sets is successfully ap-
plied to replace addition of scalars. Since for nonconvex sets the Minkowski
sum is too big and there is no approximation result as in the case of convex
sets, a binary operation, called metric average, is used instead. With the
metric average, spline subdivision schemes constitute approximating opera-
tors for set-valued functions which are Lipschitz continuous in the Hausdorff
metric. Yet this result is not completely satisfactory, since 3D objects are
not continuous in the Hausdorff metric near points of change of topology,
and a special treatment near such points has yet to be designed.
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1. Introduction. The interest in developing subdivision schemes for
compact sets is motivated by the problem of the reconstruction of 3D objects
from a set of their 2D parallel cross sections, or the reconstruction of a 2D shape
from a set of its 1D parallel cross sections. For a review on methods for the
reconstruction of 3D objects from a finite set of parallel cross sections see [10].

In our approach every n-dimensional body is regarded as a univariate
set-valued function with compact sets of dimension n − 1 as images, determined
by parallel cross sections [9]. The set-valued function is then approximated from
the given samples (cross sections). The approximating procedure we use is an
extension to compact sets of spline subdivision schemes.

A spline subdivision scheme generates from data consisting of real values
attached to the integer points, a smooth function. In case of data sampled from
a smooth function, the limit function, generated by such a scheme, approximates
the sampled function, and has shape preserving properties [4, 5, 11].

Here we consider spline subdivision schemes operating on data consisting
of compact sets. A spline subdivision scheme generates from such initial data
a sequence of set-valued functions, with compact sets as images. This sequence
converges in the Hausdorff metric to a limit set-valued function. In the case of
2D sets, the limit set valued function, with 2D sets as images, describes a 3D
object.

For the case of initial data consisting of convex compact sets, we intro-
duced in [6] spline subdivision schemes, where the usual addition of numbers
is replaced by Minkowski sums of sets. Then the spline subdivision schemes
generate limit set-valued functions with convex compact images which can be ex-
pressed as linear combinations of integer shifts of a B-spline, with the initial sets
as coefficients. The subdivision techniques are used to conclude that these limit
“set-valued spline functions” have shape preserving properties similar to those of
scalar spline functions, but with shape properties relevant to sequences of sets
and to set-valued functions.

In the case of nonconvex initial sets it is shown in [7] that the limit set-
valued function, generated by a spline subdivision scheme, using the Minkowski
sums, coincides with the limit set-valued function, generated by the same subdi-
vision scheme from the convex hulls of the initial sets. Therefore, a set-valued
function generated in such a way, has too big images to be a good approximation
to the set-valued function from which the initial nonconvex sets are sampled.

To define spline subdivision schemes for general compact sets, which
do not convexify the initial data, i.e. preserve the non-convexity, the usual
Minkowski average is replaced by a binary operation between two compact sets,
the metric average, introduced in [1] and applied within subdivision schemes in
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[8]. As is shown in [8], spline subdivision schemes, based on the metric average,
converge in the Hausdorff metric. The limit set-valued function generated by
such a scheme, from initial data sampled at distance h from a Lipschitz contin-
uous set-valued function with compact images, approximates to order O(h) the
sampled function.

2. Preliminaries. First we introduce some notations. The collection of
all nonempty compact subsets of R

n is denoted by Kn, Cn denotes the collection
of convex sets in Kn, 〈·, ·〉 is the inner product in R

n, |x| is the Euclidean norm
of x ∈ R

n, Sn−1 is the unit sphere in R
n, coA denotes the convex hull of the set

A.
The Hausdorff distance between two sets A and B in R

n is defined by

haus(A,B) = max{ sup
x∈A

dist(x,B) , sup
y∈B

dist(y,A) },

where the Euclidean distance from a point x to a set A ∈ Kn is

dist(x,A) = min{|x − y| : y ∈ A }.

The support function δ∗(A, ·) : R
n → R is defined for A ∈ Kn as

δ∗(A, l) = max
a∈A

〈l, a〉, l ∈ R
n.

The set of all projections of x on the set A is

ΠA(x) = { a ∈ A : |a − x| = dist(x,A) }.

The set difference of A,B ∈ Kn is

A \ B = { a : a ∈ A, a 6∈ B }.

A linear Minkowski combination of two sets A and B is

λA + µB = { λa + µb : a ∈ A, b ∈ B },

for A,B ∈ Kn and λ, µ ∈ R. The Minkowski sum A + B corresponds to a linear
Minkowski combination with λ = µ = 1. A Minkowski average (a Minkowski
convex combination) of two sets is a linear Minkowski combination with λ, µ
non-negative, summing up to 1.

We denote by S the class of multifunctions (set-valued functions) of the
form,

F (t) =

N
∑

i=1

Aifi(t),(1)

where N is finite and Ai ∈ Cn. We say that F ∈ S is Ck if in (1) fi ∈ Ck for
i = 1, . . . , N .
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The notions convergence, continuity, Lipschitz continuity for set-valued
functions or for sets, are to be understood with respect to the Hausdorff metric
(distance). Let us recall that Kn is a complete metric space with respect to this
metric.

3. Spline subdivision schemes for points in R
d. A spline curve

in Rd of degree m is defined by

C(t) =
∑

i∈Z

P 0
i Bm(t − i) for each t ∈ R,(2)

where P 0 = {P 0
i ∈ R

d, i ∈ Z} are the control points and Bm(·) is a B-spline of
degree m. Due to the compact support of Bm, the treatment of the case in (2)
applies also to curves defined by a finite set of control points.

The curve in (2) is the limit of a sequence of piecewise linear curves,
each interpolating the points generated by the spline subdivision scheme Sm at
a certain refinement level according to the refinement step,

P k+1
i =

∑

j∈Z

a
[m]
i−2jP

k
j , i ∈ Z, k = 0, 1, 2, . . .(3)

with the spline weights a
[m]
i =

(

m + 1

i

)

/2m, i = 0, 1, . . . ,m + 1 and a
[m]
i = 0 for

i ∈ Z \ {0, 1, . . . ,m + 1}.

For m = 1, the above scheme has coefficients a0 =
1

2
, a1 = 1, a2 =

1

2
,

and the refinement step is:

P k+1
2i =

1

2
P k

i +
1

2
P k

i−1,(4)

P k+1
2i+1 = P k

i .(5)

In this case the limit is a linear spline curve, interpolating the initial points
{P 0

i : i ∈ Z}.

A quadratic spline curve is obtained as a limit in case m = 2, with the

well-known scheme of Chaikin. The coefficients of this scheme are: a0 =
1

4
,

a1 =
3

4
, a2 =

3

4
, a3 =

1

4
, and the refinement step is

P k+1
2i =

1

4
P k

i +
3

4
P k

i−1,(6)

P k+1
2i+1 =

3

4
P k

i +
1

4
P k

i−1.(7)
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An important result (see e.g. [4], [5]) is that the scheme (3), starting from
{P 0

i : i ∈ Z} ∈ ld
∞

, converges to a function f(·) ∈ C(R)d, i.e. lim
k→∞

sup
i∈Z

|f(2−ki)−

P k
i | = 0 if and only if lim

k→∞

sup
t∈R

|f(t)−
∑

i∈Z

P k
i h(2kt− i)| = 0, where h(·) is the “hat

function”

h(t) =
{

1 − |t| for |t| ≤ 1,
0 otherwise.

(8)

The limit function f(t) is denoted by S∞

m P 0.

4. Extension to convex compact sets. The case of convex compact
sets is investigated in [6].

We assume that the initial data {F 0
i , i ∈ Z} are convex compact sets.

Then the addition operation in (3) is replaced by the Minkowski sum of sets, and
the multiplication of a set by a scalar is defined as

µA = { µa : a ∈ A }, µ ∈ R.(9)

The refinement step becomes

F k+1
i =

∑

j∈Z

a
[m]
i−2jF

k
j , i ∈ Z, k = 0, 1, 2, . . .(10)

We note that convex compact sets are generated at each step of (10), if F 0
i , i ∈ Z

are compact and convex.
It is shown in [6] that the set-valued spline function

F∞

m (t) =
∑

i∈Z

F 0
i Bm(t − i) for each t ∈ R,(11)

is the uniform limit in the Hausdorff metric of the subdivision scheme,

lim
k→∞

sup
i∈Z

haus(F∞

m (2−ki), F k
i ) = 0,

or equivalently, that lim
k→∞

sup
t∈R

haus

(

F∞

m (t),
∑

i∈Z

F k
i h(2kt − i)

)

= 0, where h(·) is

the hat function defined in (8). The proofs in [6] are based on the support
functions parametrization of convex compact sets. The linear (and ordering)
properties of the support functions, reflecting the corresponding properties of the
Minkowski operations on convex sets, allow to reduce the subdivision process on
convex compact sets to subdivision on the support functions, and to apply known
results on subdivision of scalar functions.

An easy way (suggested by David Levin) to see that F∞

m in (11) is the limit
of the spline subdivision scheme, is based on the associativity and distributivity
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of the Minkowski sum and the positive-scalar multiplication of sets. Writing
F 0 =

∑

i∈Z

F 0
i δ[i] with

δ
[i]
j =

{

1 for j = i
0 j 6= i.

we get F∞

m =
∑

i

F 0
i S∞

m δ[i]. Since S∞

m δ[i] = Bm(·− i) (see e.g. [4, 5]), (11) follows.

The spline subdivision schemes have the following shape preserving prop-
erties:

1. Monotonicity preservation: If F 0
i ⊂ F 0

i+1 for all i, then F k
i ⊂ F k

i+1 for
all k, i, and F∞

m is monotone in the sense that F∞

m (t) ⊂ F∞

m (t + h) for any
t ∈ R and h > 0.

2. Convexity preservation: If 2 F 0
i+1 ⊃ F 0

i + F 0
i+2 for all i, then 2F k

i+1 ⊃

F k
i + F k

i+2 for all k, i, and F∞

m is convex in the sense that its graph is
convex, i.e., 2F∞

m (t + h) ⊃ F∞

m (t) + F∞

m (t + 2h) for all h, t ∈ R.

As already mentioned, subdivision schemes for compact sets constitute a
method for the approximate reconstruction of 3D objects from their 2D parallel
crossections, or, respectively, of 2D shapes from their 1D parallel crossections.
Thus the rate of approximation of these schemes is of importance. Indeed, for
continuous set-valued functions we have an approximation result.

If the set-valued function G(·) has convex compact images (it is not nec-
essary that its graph is convex), and is Lipschitz continuous, that is, haus(G(t +
∆t), G(t)) = O(∆t), and the initial data for the spline subdivision scheme consist
of samples of G, of the form F 0

i = G(i∆t), i ∈ Z, then

haus(G(t), F∞

m (t)) = O(∆t).

One can easily use the method of proof in [6] to show that if G(·) is only con-
tinuous, then the right-hand side of the last estimate is O(ω(G, t,∆t)), where
ω(G, t,∆t) is the modulus of continuity of G defined in terms of the Hausdorff
distance.

The estimate haus(G(t), F∞

m (t)) = O((∆t)2) is obtained for a multifunc-
tion G(t) which has a support function δ∗(G(t), l) with second derivative with
respect to t, uniformly bounded in l ∈ Sn−1. Clearly, every multifunction G from
S ∩ C2 satisfies this condition.

It is well known that Minkowski averages with equal weights of a large
number of nonconvex sets, tend as the number of sets grows, to the limit of the
averages with equal wights of the convex hulls of the sets. It turns out that for
every spline subdivision scheme, since a fixed Minkowski convex combination of a
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small number of sets is repeated an infinite number of times, the limit set-valued
function equals to the limit multifunction obtained by the same scheme from the
convex hulls of the initial sets [7]:

F∞

m (t) =
∑

i∈Z

(coF 0
i ) Bm(t − i) for each t ∈ R,(12)

The proof of (12) is based on the use of a measure of nonconvexity of a set,
the so-called inner radius, which is an upper bound for the Hausdorff distance
between the set and its convex hull. Two important ingredients are used in the
proof. A Pythagorean type upper estimate for the inner radius of a Minkowski
sum of compact sets by the inner radii of the summands, proved by Cassels [3],
and the fact that the coefficients of averaging in the refinement step of the spline
subdivision schemes (10) are non-negative and sum up to 1. With these two
ingredients it can be shown that the Hausdorff distance between the set F k

i and
its convex hull vanishes as k → ∞, uniformly in i, as a geometric progression
with a ratio less than 1.

Therefore, with the Minkowski averages, no approximation result can be
expected for set-valued functions with nonconvex images. This failure of the
Minkowski sum for nonconvex sets is in accordance with the observation that the
Minkowski average of convex sets has properties, which do not hold for nonconvex
sets. Let A,B,C ∈ Cn, 0 ≤ λ ≤ 1. Then

1. λA + (1 − λ)A = A, λ ∈ (0, 1);

2. λA + (1 − λ)B = λA + (1 − λ)C =⇒ B = C.

These two properties do not hold for nonconvex sets. Indeed, for a nonconvex set
A ∈ Kn, λA + (1 − λ)A ⊃ A.

Here is a simple example, showing that Minkowski averages for nonconvex

sets are too big. A = {0, 1}, An =
1

n

n
∑

i=1
A =

{

0,
1

n
,
2

n
, . . . , 1

}

. Moreover, in the

Hausdorff metric, lim
n→∞

An = coA, demonstrating the convexification nature of

Minkowski averaging processes.

5. The metric average. A binary operation introduced in [1], and
called in [8] “metric average”, has several properties which make it appropriate
for our purposes.

Definition 5.1. Let A,B ∈ Kn and 0 ≤ t ≤ 1. The t-weighted metric

average of A and B is

A⊕tB = {t{a} + (1 − t)ΠB(a) : a ∈ A} ∪ {tΠA(b) + (1 − t){b} : b ∈ B}(13)
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where the linear combinations above are in the Minkowski sense.

The following properties of the metric average are easy to observe [8].
Let A,B,C ∈ Kn and 0 ≤ t ≤ 1, 0 ≤ s ≤ 1. Then

1. A ⊕0 B = B, A ⊕1 B = A, A ⊕t B = B ⊕1−t A.

2. A ⊕t A = A.

3. A ∩ B ⊆ A ⊕t B ⊆ tA + (1 − t)B ⊆ co(A ∪ B).

The metric property of this average, which is essential for our applications and
which gave it its name, is proved in [1]:

4. haus(A ⊕t B,A ⊕s B) = |t − s|haus(A,B).

The metric average of sets in R has several more properties [2].
Let A,B,C ∈ K1, D,E ∈ C1, t ∈ [0, 1] and let µ(A) denote the Lebesgue measure
of the set A. Then

• D⊕tE = tD + (1 − t)E,

• µ(A⊕tB) = tµ(A) + (1 − t)µ(B).

• µ(co(A⊕tB) \ (A⊕tB)) = tµ(coA \ A) + (1 − t)µ(coB \ B).

• A⊕tB = A⊕tC =⇒ B = C.

In the next example we have plotted the one-dimensional sets A, B and the set
Ct = A⊕tB in one picture, giving B at the y-coordinate 0, A at y=1, and Ct at

y= t for t =
1

4
,
1

2
,
3

4
(see Figure 1). The two sets are

A = [0, 1] ∪ [5, 6] ∪ [7.5, 8] ∪ [9, 10] ∪ [11.5, 14], B = [1, 4] ∪ [5, 6.5] ∪ [14, 16].

It follows from the definition of the metric average that the metric average
of two sets produces a subset of the Minkowski average and also that the metric
average of a set with itself is the set. Indeed, this binary operation, being smaller
than the Minkowski average, does not convexify repeated averaging processes.
Since it is defined as a binary operation between two sets, in order to use it in
spline subdivision schemes we need another representation of these schemes in
terms of repeated binary averaging.

6. Spline subdivision schemes with metric averages. First, we
represent the spline subdivision schemes in terms of repeated binary averages.
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C   = B 
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C 1/4 

C
1/2

C 
3/4 

C  = A 
1 

1 3 4 5 6.5  14  16

0    1 5     6 7.5  8 9   10 11.5 14 

Figure 1. The sets A, B and Ct

The refinement step (3) can be obtained by one step of refinement of the
linear spline subdivision, followed by a sequence of binary averages. The sequence
of steps which replaces (3) consists of first defining

P k+1,0
2i = P k

i , P k+1,0
2i+1 =

1

2
(P k

i + P k
i+1), i ∈ Z,(14)

and then defining for 1 ≤ j ≤ m − 1 the intermediate averages

P k+1,j

i+ 1
2

=
1

2
(P k+1,j−1

i + P k+1,j−1
i+1 ), i ∈ Ij ,(15)

where

Ij =

{

Z, j odd
1
2Z \ Z, j even.

(16)

The final values at level k + 1 are

P k+1
i = P k+1,m−1

i for m odd, i ∈ Z,

P k+1
i = P k+1,m−1

i− 1
2

for m even, i ∈ Z.

For example, in case m = 2, one step of (14) followed by one step of (15) is
equivalent to the refinement step of the Chaikin scheme.

The above procedure is carried over to compact sets, with the metric
average replacing the averaging operations in (14) and (15) [8]. First refining
with metric averages

F k+1,0
2i = F k

i , F k+1,0
2i+1 = F k

i ⊕ 1
2

F k
i+1, i ∈ Z,(17)
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and then, for 1 ≤ j ≤ m − 1, replacing the sequence {F k+1,j−1
i : i ∈ Z} by

metric averages of pairs of consecutive sets

F k+1,j

i+ 1
2

= F k+1,j−1
i ⊕ 1

2
F k+1,j−1

i+1 , i ∈ Ij.(18)

The final refined sets are

F k+1
i = F k+1,m−1

i for m odd, i ∈ Z,

F k+1
i = F k+1,m−1

i− 1
2

for m even, i ∈ Z.

The convergence of this scheme follows from the metric property of the metric
average. Denote dk = sup

i

haus(F k
i , F k

i+1), k = 0, 1, . . . . Then dk+1 ≤ 1
2dk. At

the k-th stage of the subdivision, the set-valued function F k(t) is constructed as
follows:

F k(t) = F k
i ⊕λ(t) F k

i+1, i2−k ≤ t ≤ (i + 1)2−k,

where λ(t) = (i + 1) − t2k. It follows from the metric property of the metric
average that

sup
t

haus(F k+1(t), F k(t)) = O(2−k),

therefore {F k(t)}k∈Z+
is a Cauchy sequence in the complete metric space Kn.

Thus the limit of this sequence exists and is denoted by S∞

m F 0(t).
The approximation property below justifies the reconstruction of objects

from their parallel cross sections by a spline subdivision scheme which uses metric
averages instead of Minkowski averages.

Let the univariate multifunction G(t) have compact images and let it be
Lipschitz continuous. If F 0

i = G(i∆t), i ∈ Z, then

sup
t

haus(S∞

m F 0(t), G(t)) = O(∆t).

An example [8] of a shell included between two quarters of spheres is represented
in Figure 2.

This body can be represented by the following set-valued function F (x),
defined for 0 ≤ x ≤ 1:

F (x) = { (y, z) ∈ R
2 | z ≤ 0, r(x) ≤ y2 + z2 ≤ 0.2 + r(x) },

where r(x) = 1 − x2. Given the initial crossections F (0), F (h), F (2h), . . . , F (1),
we reconstruct this shell by a metric subdivision scheme of Chaikin type, and
obtain a sequence of piecewise linear (in a metric sense) set-valued functions
{F k(t)}∞k=0, with F k(t) interpolating the sets generated at level k. The crossec-

tions F 3

(

h

2
+ 0.25i

)

, i = 0, 1, 2, 3 of F 3, obtained after three subdivision iter-

ations from the initial sets as above with h = 0.125, are presented in Figure 3.
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Figure 2. A shell included between two quarters of spheres
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Fig. 3. Four cross-sections of the final body

The maximal Hausdorff distance between these crossections at the third iteration
and the corresponding crossections of the initial object is 0.0122.

Since 2D shapes and 3D objects, when regarded as univariate multifunc-
tions, are usually discontinuous in the Hausdorff metric at points of change of
topology, the above approximation result does not hold near such points. This
observation calls for a special treatment near points of change of topology, a
subject which is still under investigation.
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