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Abstract. Let P be a bi-variate algebraic polynomial of degree n with the
real senior part, and Y = {yj}n

1
an n-element collection of pairwise non-

colinear unit vectors on the real plane. It is proved that there exists a rigid
rotation Y ϕ of Y by an angle ϕ = ϕ(P, Y ) ∈ [0, π/n] such that P equals the
sum of n plane wave polynomials, that propagate in the directions ∈ Y ϕ.

I will start this article from a short memorial section, very fragmentary
and non-monumental. I hesitated a long time. It was by far not easy to decide
whether to write this part or to abstain, and if to write – what form to select.
Because our crowd is a poor belletrist, with very few exceptions to which I do not
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belong. We are trained to directly dive into definitions, notations, and theorems
that we righteously think are absolutely important, of an almost eternal signif-
icance. We prefer to keep the inner eyes of our personal memories comfortably
shut, and move on, and on, and prove that our ε is better than . . . all other ε’s.

Still, I will try. I will not touch Vasil’s mathematics. Others described his
works much better than I ever could. Instead I will attempt to write something
on a human side, maybe funny, maybe, not. My memory has a warm corner
dedicated to Vasil as a person and to things we experienced together. I will try
to share just one non-sophisticated event with you.

Autumn of 1975, Warsaw. Zbigniew Cieselski did such a great job with
the semester on approximation theory! I spent the whole term in the Banach
Center. It was a full 3 months of really good time, with the freedom to choose
either an excellent lecture on Mokotowska 25, or sitting at home over a proof of
something important, or a stroll in the magnificent Lazienki Park, with Chopin’s
piano concerts in the open air. “The Godfather” was played in some movie
theaters in Warsaw, and if one was patient enough to spend a few hours in a line
early in the morning, before the store was open, – it was even possible to buy
a record of “ABBA”. Of course, we also partied a lot, and danced not only in
mathematical circles.

So, once we with Vasil received an invitation to a birthday party of a young
guy, let us denote him here as Pavel, a friend of one of my non-mathematical
friends in Warsaw. On our way to his place, Pavel openly declared to us that he
was a junior officer of intelligence, worked in a unit specializing in observation
and analysis of political views. Naturally, this voluntary confession made Vasil
and me a bit tense, especially Vasil. . . However, on our awkwardly silent way
from the bus stop, Pavel pointed his finger first at a bushy grove, and asked: “Do
you see that bush?”, and then immediately, not waiting for our reply, turned the
finger to a house, still in a distance. “Do you see that window?” “Yes, we do.
So what?” “A year ago, my ministry gave me a one-bedroom apartment in that
house. We are heading there. And from time to time my boss borrows the key
from me, to spend a few merry hours with this or other lady from our office. And
I am a curious fellow, too. I have to be, after all. So, while the boss and his
party are there, I am sitting in the bush with a binocular, trying to figure out –
whom he brought this time. They are cautious, and they keep the curtains down
in most cases. I have better luck if I am able to catch them still on their way
there, but the boss is smart, too. He orders me some urgent paperwork in the
office that keeps me busy after he leaves!”

The ice was not completely broken yet, but the general atmosphere ob-
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viously improved after Pavel’s story. The birthday party developed quite suc-
cessfully and in a right direction for a few hours. It was a truly one-bedroom
apartment, with a tiny table, four simple chairs, and the master’s bed right
next to the table. I do not think that the place even had a separate kitchen, but
maybe, I am wrong. Anyhow, we celebrated Pavel’s birthday, and everything was
OK. After some time, we got engaged in energetic discussions of various subjects.
They ranged from the quality of binoculars that should be used for observation of
Pavel’s boss’ activities, to democracy and advantages or disadvantages of social-
ism over capitalism, and vice versa, in our countries (Bulgaria, Poland, USSR),
and to approximation in Hausdorff metric and Riemann conjecture.

By the way, I remember a problem that Vasil again mentioned in our
warm conversation at the birthday table. He said, it came from physicists, and if
I remember correctly, he assigned it to academician Hristov. Assume that f(x) is
a periodic uni-modular complex-valued function, i. e. f(x+ 1) ≡ f(x), |f(x)| ≡
1. Is such a function uniquely determined by the sequence of complex moduli
{|f̂(n)|}, n = 0,±1, . . . of its Fourier coefficients f̂(n) :=

∫ 1
0 f(x)e−2πinx dx ?

Then I could not answer this question, and I do not know the answer now. Sure,
Vasil picked on me for my ignorance in this problem. He claimed, that I would
never be able to solve it. He was right, I suppose. Then he pressed for a somewhat
different issue. He claimed, the exact value of a certain constant in a Hausdorff
approximation problem is related with the Riemann conjecture, that he was going
to attack and solve both problems in a near future. Naturally, I responded that,
first of all, these problems are not related at all, and second, that he, Vasil,
is capable of neither finding that constant nor solving the Riemann conjecture.
Thus, we could not achieve a reasonable consensus by purely scientific methods.
So I said: “I am better in arm wrestling than any other approximator!” “No, I
am better!” – Vasil replied. “Certainly. Let’s try!” We quickly cleared a corner
on the table, and properly positioned the elbows. “One, two, three, go!” – Pavel
commanded. ”Crack!” – the leg of Vasil’s chair could not withstand the fury of
the attack, and we with Vasil collapsed onto the bed, “Crack, crack!” – the bed
responded under our weight. It fell apart into tiny splinters! Almost unbelievable,
hard to expect it from such a presumably solid piece of furniture that served for
security of the state. . .

The officer’s chair and bed were completely destroyed, but somehow it
helped to finish melting the remainders of ice between us and Pavel. The party
had a happy ending. However, those mathematical problems remained open.
Neither did we learn, who was better in arm wrestling – I or Vasil.
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And now to mathematics. For a natural d, denote Rd the real d-dimensio-

nal Euclidean space of vectors x = (x1, . . . , xd). The inner product, the length,

the unit ball, and the unit sphere in Rd are, respectively,

〈x,y〉 := x1y1 + · · · + xdyd, |x| :=
√

〈x,x〉,

Bd := {x : |x| ≤ 1}, Sd−1 := {y : |y| = 1}.
For a fixed y ∈ Sd−1, a plane wave propagating in the direction y, is a function

on Rd, of the type W (x) = w(〈x,y〉), x ∈ Rd, where w = w(x), x ∈ R1 is

a uni-variate function. w is called profile of the wave W . If w is a uni-variate

algebraic polynomial, we call the corresponding W a polynomial wave on Rd.

Let us denote Pd,n the space of algebraic polynomials, of degree n in d

real variables, with complex coefficients

Pd,n := Span
{

xk1

1 · · · xkd

d

}

0≤k1+···+kd≤n
.

For a polynomial

P (x) =
∑

0≤k1+···+kd≤n

ck1,...,kd
xk1

1 · · · xkd

d ∈ Pd,n

let us denote S(P,x) its senior part, i. e.

S(P,x) =
∑

k1+···+kd=n

ck1,...,kd
xk1

1 · · · xkd

d .

The general problem of our concern is the following.

How many polynomial waves are needed to compose a given polynomial

P ∈ Pd,n, and how can one characterize the directions of propagation of such

waves?

More precisely, we are interested in representations with the smallest num-

ber of waves whose sum equals P :

N(P ) := min







N : P (x) ≡
N
∑

j=1

wj(〈x,yj〉)







.(1)

In recent literature, plane waves are known as ridge functions; we call N(P )

ridge number of P . We will also say that a collection of vectors (not necessarily

minimal) Y = {yj}N
1 ⊂ Sd−1 is a composition set for P , iff P can be represented

as a sum of polynomial waves propagating in the directions y1, . . . ,yN .
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Since composition sets in problem (1) are subjected to optimization for

a given polynomial P , this problem is of non-linear approximation type. That

algebraic polynomials play a special role as a tool of intermediate approximants

in a general ridge approximation problem has been known long ago. Pioneering

works in this direction belong to B. A. Vostrecov and M. A. Kreines, cf. [1]–

[3]. Fundamentality problems of ridge functions and their generalizations were

considered later by A. Pinkus and V. Ya. Lin [5].

We confine our attention in this paper on bivariate polynomials, i. e. on

the simplest case d = 2. In this case, the following results are known.

1) Every (n + 1)-element collection Y = {yj}n+1
1 of pair-wise non co-linear di-

rections is a composition set for all polynomials P ∈ P2,n, cf. e. g. [4].

2) For polynomials in P ∈ P2,n with the real senior part S(P ) one has

max
P∈P2,n,ℑS(P )≡0

N(P ) = n.(2)

In the other words, for each P ∈ P2,n with real senior part, there exists an n-

element composition set Y = {yj}n
1 ; on the other hand, there are real polynomials

in P2,n for which the number n cannot be reduced. This result was recently proved

by A. Schinzel [6].

We provide an alternative proof, based on Chebyshev–Fourier analysis,

of Schinzel’s result. Simultaneously, we somewhat strengthen the latter result by

retrieving an element of arbitrariness to composition sets.

Theorem 1. Let Y = {yj}n
j=1 be an arbitrary n-element collection of

pair-wise non co-linear (unit) vectors, and P a bivariate polynomial of degree

n, with the real senior part S(P ). Then one can rigidly turn Y by an angle

ϕ = ϕ(P, Y ) ∈ [0, π/n] so that the rotated collection Y ϕ is a composition set for

P .

Remark 1. This theorem is sharp: one cannot improve the estimate

N(P ) ≤ n for polynomials with the real senior part, see also [6], or drop the

condition ℑS(P ) = 0.

A. The complex polynomial P (x) := (x1 + ix2)
n, i =

√
−1, is not a composition

of n polynomial waves, so that for this polynomial N(P ) = n+ 1.

B. The real polynomials P (x) := ℜ(x1 + ix2)
n, Q(x) := ℑ(x1 + ix2)

n are not

compositions of n − 1 polynomial waves, so that for these polynomials N(P ) =

N(Q) = n.

P r o o f. Let us start from a reduction of the problem to interpolation by

translates of trigonometric Dirichlet kernels.
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For this purpose, let us use the following integral representation (Cheby-

shev–Fourier expansion) for polynomials P ∈ P2,n (cf. [7, 4, 8], and [9] where

Chebyshev–Fourier analysis is discussed also for higher dimension case d ≥ 3):

P (x) =
1

2π

∫ 2π

0

(

n
∑

m=0

(m+ 1)am(ϑ)um(〈x,yϑ〉)
)

dϑ .(3)

In (3), yϑ := (cos ϑ, sinϑ), ϑ ∈ R1; and for m = 0, 1, . . ., um and am(ϑ) =

am(P, ϑ) denote, respectively, the m-th uni-variate Chebyshev polynomial of the

second kind, and the m-th Chebyshev ridge momentum of P ∈ P2,n:

um(x) :=
sin(m+ 1) arccos x√

1 − x2
, x ∈ [−1, 1];

am(ϑ) :=
1

π

∫

B2

P (x)um(〈x,yϑ〉) dx.

The m-th Chebyshev momentum am is a trigonometric polynomial of degree m,

and am(ϑ + π) ≡ (−1)mam(ϑ). Denote T ±
m the subspace of all trigonometric

polynomials with this property, and Dm – the Dirichlet kernel of T ±
m :

T ±
m := Span {eilϑ}|l|≤m(2), Dm(ϑ) :=

∑

|l|≤m(2)

eilϑ =
sin(m+ 1)ϑ

sinϑ
,

where {|l| ≤ m(2)} is the set of integers l that satisfy |l| ≤ m and l ≡ m (mod 2).

Obviously Dm ∈ T ±
m , and

a(ϑ) ≡ 1

2π

∫ 2π

0
a(ϕ)Dm(ϑ − ϕ) dϕ, ∀a ∈ T ±

m .(4)

In particular, we have

um (〈x,yϑ〉) ≡
1

2π

∫ 2π

0
um (〈x,yϕ〉)Dm(ϑ− ϕ) dϕ,(5)

because for each fixed x , um (〈x,yϑ〉), as a function of ϑ, is a trigonometric

polynomial in T ±
m .

Now let us consider a uni-variate function (in fact, an algebraic polyno-

mial) w(x), x ∈ [−1, 1], and expand it into Fourier series with regard to the

system {um}:

w(x) =
∑

m

bmum(x), bm = bm(w) =
2

π

∫ 1

−1
w(x)um(x)

√

1 − x2 dx.(6)
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If y is a fixed unit vector, say, y = (cos ϑ1, sinϑ1) = yϑ1
, then it follows from (6)

and (5) that the expansion (3) of a plane wave W (x) := w(〈x,y〉) in the direction

y is given by

w (〈x,yϑ1
〉) =

∑

m

bmum (〈x,yϑ1
〉) =

=
1

2π

∫ 2π

0

(

∑

m

(m+ 1)
bmDm(ϑ1 − ϑ)

m+ 1
um(〈x,yϑ〉)

)

dϑ .

Therefore (cf. also [8]), the momenta of a single plane wave are numerical multi-

ples of shifted Dirichlet kernels:

am(w(〈·,yϑ1
〉), ϑ) =

bmDm(ϑ − ϑ1)

m+ 1
, m = 0, 1, . . .(7)

Let us consider an N -element collection Θ = {ϑj}N
1 of real numbers, pair-wise

non congruent mod π, so that the vectors of the corresponding direction set YΘ =

{(cos ϑj, sinϑj)}N
1 are pair-wise non co-linear. Denote

R(YΘ) :=

{

N
∑

1

wj

(〈

x,yϑj

〉)

}

the set of compositions of plane waves in the directions yϑj
. It follows from (3)

and (7) that R(YΘ) is equivalently described in terms of Chebyshev momenta:

f ∈ R(YΘ) ⇐⇒ am(f) ∈ Tm(Θ),

Tm(Θ) := Span {Dm (· − ϑj)}N
j=1 , m = 0, 1, . . . ,

(8)

i. e. the momenta of R(YΘ) are linear combinations of shifted Dirichlet kernels.

Since Dm (· − ϑj) ∈ T ±
m , we obviously have

Tm(Θ) ⊂ T ±
m , dim Tm(Θ) ≤ min(dim T ±

m , card Θ) = min(m+ 1, N).

The following stronger statement concerning shift spaces of Dirichlet kernels is

true:
a) Tm(Θ) = T ±

m for N ≥ m+ 1;

b) dimTm(Θ) = rank [Dm (ϑk − ϑj)]
N
j,k=1 = min(m+ 1, N).

(9)

For the sake of completeness, let us outline the proof of these known properties,

see e. g. [4], or [8].
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Denote Π = ΠΘ,m the linear operator of orthogonal projection of T ±
m onto

Tm(Θ), in the sense of L2(0, 2π):

Π(a) = arg min
b∈Tm(Θ)

‖a− b‖L2(0,2π), ‖a‖L2(0,2π) :=

√

1

2π

∫ 2π

0
|a(ϑ)|2 dϑ .

For a given trigonometric polynomial a ∈ T ±
m , its projection Π(a) is characterized

by the usual orthogonality relations in L2(0, 2π)

∫ 2π

0
(a(ϑ) − Π(a, ϑ))Dm(ϑ− ϑk) dϑ = 0, k = 1, . . . , N,

which by (4) means that the polynomials a and P (a) coincide on Θ:

Π(a, ϑ) = a(ϑ), ϑ ∈ Θ.(10)

If the number of points in Θ is large, namely N ≥ m+ 1, then (10) implies that

P (a) ≡ a for all a ∈ T ±
m , which is the same as T ±

m = Tm(Θ). This easily follows,

if we separately consider cases of even and odd m, and refer to the uniqueness of

solution of trigonometric Lagrange interpolation problem.

Further, for a given polynomial a ∈ T ±
m , its projection Π(a) onto T ±

m is a

linear combination of shifted Dirichlet kernels

Π(a) =

N
∑

j=1

αjDm(· − ϑj),

and according to (10), the coefficients α satisfy the following system of N linear

equations
N
∑

j=1

αjDm(ϑk − ϑj) = a(ϑk), k = 1, . . . , N.(11)

This system is consistent whenever the data on the right are point-values a(ϑk)

of a trigonometric polynomial a ∈ T ±
m . Consequently,

dim Tm(Θ) = rank [Dm (ϑk − ϑj)]
N
j,k=1 = dim {a(ϑ1), . . . , a(ϑN )}a∈T ±

m
,

and the latter dimension equals min(N,m + 1), which follows from Lagrange

interpolation. This completes the proof of (9).
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Consider a collection of n angles Θ = {ϑj}n
1 , pair-wise non congruent

modπ, and assume that a is a trigonometric polynomial in T ±
n whose senior

harmonic (highest term) is real, i.e.

a(ϑ) = ρ cos (nϑ+ ψ) + b(ϑ)

where ρ and ψ are some fixed real numbers, and b ∈ T ±
n−2.

Let us prove that there exists a real number ϕ0 = ϕ0(Θ, ψ) such that

a ∈ Tn (Θϕ0) , 0 ≤ ϕ0 ≤ π

n
(12)

where Θϕ denotes the rigid shift of Θ by ϕ, i. e. Θϕ := {ϑj + ϕ}n
1 .

Remark 2. For the proof of (12), we will add an extra “interpolation”

point θ0 to the original n-point collection Θ, and later eliminate it by an ap-

propriate translation, that depends on the phase of the senior harmonic of the

polynomial a. This consideration is quite coherent with M. Riesz’ [10] trigono-

metric interpolation formula with an even number of fundamental points. The

latter is a known classical tool of the proof of S. Bernstein’s inequality, see e. g.

A. Zygmund [11, Ch. 10, Section 3].

According to (9, a) with N = n, m = n − 2 we have b ∈ Tn (Θϕ) for

every shift ϕ. Therefore, the lower degree polynomial b can be disregarded, and

without loss of generality, we assume that b ≡ 0. Plainly, we can also assume

that ρ = 1 and ψ = 0.

Let us add to Θ an extra point, say ϑ0, non-congruent modπ with any of

ϑj , j = 1, . . . , n. Consider the enlarged (n + 1)-element collection Θ∗ := {ϑj}n
0 ,

and its rigid shifts Θϕ
∗ . Then according to (9,a) we have cosnϑ ∈ Tn(Θϕ

∗ ) for

every shift ϕ, i. e.

cosnϑ ≡
n
∑

j=0

αjDn (ϑ− ϕ− ϑj)(13)

Here, the coefficients αj are functions of ϕ, αj = αj(ϕ); these coefficients, in

accordance with (11) and (9,b) are uniquely defined by the system of n+1 linear

equations

cosnϑϕ
k =

n
∑

j=0

αj(ϕ)Dn

(

ϑϕ
k − ϑϕ

j

)

, k = 0, 1, . . . , n.

Since ϑϕ
k = ϑk + ϕ, and ϑϕ

k − ϑϕ
j = ϑk − ϑj, this system is the same as

cosn(ϑk + ϕ) =
n
∑

j=0

αj(ϕ)Dn (ϑk − ϑj) .
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The matrix of this system is non-singular and does not depend on ϕ. Hence the

solutions αj(ϕ) are functions of the kind αj(ϕ) = ρj cos (nϕ+ ψj), where ρj , ψj

are some real constants. Therefore, each αj(ϕ) vanishes at a certain point on

each interval of the length ≥ π/n. In particular, the coefficient α0(ϕ) in (13)

vanishes at a certain point ϕ0 ∈ [0, π/n]. This completes the proof of (12), and

in view (8) and (9,a)– also the proof of the theorem.

Let conclude by the proof of the statements contained in Remark 1. Mak-

ing use of (3) and (8) (cf. also [8]) it is easy to see that it suffices to prove, re-

spectively, that if a collection of points {ϑj} is non-degenerate, i. e. the numbers

ϑj are pair-wise non-congruent (mod π), then

a) einϑ /∈ Span {Dn (ϑ− ϑj)}n
j=1 ; b) cosnϑ /∈ Span {Dn (ϑ− ϑj)}n−1

j=1 .(14)

Assume, on the contrary, that

a) einϑ ≡
n
∑

j=1

αjDn (ϑ− ϑj) , b) cosnϑ ≡
n−1
∑

j=1

βjDn (ϑ− ϑj)

Since Dn(ϑ) = e−inϑ + ei(−n+2)ϑ + · · · + ei(n−2)ϑ + einϑ the assumption a) would

imply that for zj := eiϑj

1 =
n
∑

j=1

αjz
−n
j , 0 =

n
∑

j=1

αjz
l
j , l = −n+ 2,−n + 4, . . . , n− 2, n,

which is inconsistent, because the n × n matrix {zl
j}, j = 1, 2, . . . , n, l = −n +

2,−n+4, . . . , n−2, n is non-singular. Indeed, if it were singular, then there would

exist a non-trivial set of n numbers γ0, γ1, . . . , γn such that the rational function

R(z) := γ0z
−n+2 + γ1z

−n+4 + · · · + γn−2z
n−2 + γn−1z

n = z−n+2
n−1
∑

k=0

γkz
2k

vanishes at the points zj, j = 1, 2, . . . , n. This assumption would imply that

a non-trivial polynomial Q(z) :=
n−1
∑

k=0

γkz
k of degree n − 1 vanishes at n points

z = z2
j = e2iϑj , j = 1, 2, . . . , n. The latter is impossible because the numbers 2ϑj

are pairwise non-congruent mod2π, so that the points z2
j are pairwise distinct.

Finally, the assumption b) would imply that

cosnϑ ≡ 2
n−1
∑

j=1

βj cosn(ϑ− ϑj), 0 ≡
n−1
∑

j=1

βjDn−2 (ϑ− ϑj)
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which is inconsistent, because the (n − 1)-element set of translates

{Dn−2 (ϑ− ϑj)}n−1
j=1 is linearly independent, see (9).
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