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Abstract. In this article on quasidifferential equation with non-fixed time
of impulses we consider the continuous dependence of the solutions on the
initial conditions as well as the mappings defined by these equations. We
prove general theorems for quasidifferential equations from which follows
corresponding results for differential equations, differential inclusion and
equations with Hukuhara derivative.

1. Introduction. In work [1] has been defined the concept of quasi-
differential equation, which is a generalization of the concept of R-solution [2, 3]
of differential inclusion. In works [1, 4] were proved theorems for existence and
uniqueness of the solution for quasidifferential equations and was showed, that
these equations define an irreversible dynamical system in metric space.

A lot of researches has been carried out recently in differential equations
with impulses. Some basic results and reference points can be found in [5]–[7].

In [8] were considered quasidifferential equations with fixed time of im-
pulses. The present article is on quasidifferential equations with non-fixed time
of impulses.
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2. Statement of the problem. Let X be a local compact metric space
with distance function δ(·, ·).

Assume that

ϕ: [o, τ) × [t0, t0 + T ) ×X → X

defines a local quasimovement, i.e. the following conditions are satisfied:
Condition D:

1) an axiom of initial conditions: ϕ(0, t0, x0) = x0;
2) an axiom of quasifitting:

δ(ϕ(τ1 + τ2, t, x), ϕ(τ2, t+ τ1, ϕ(τ1, t, x))) = o(τ1 + τ2);

3) an axiom of continuity, i.e. for every ε > 0 there exist δ1 > 0 and δ2 > 0
such that δ(ϕ(τ1, t, x1), ϕ(τ2, t, x2)) < ǫ when δ(x1, x2) < δ1, |τ1 − τ2| < δ2.

Definition 1. A quasidifferential equation in a metric space is called
the equation

(1) δ(x(t + ∆), ϕ(∆, t, x(t))) = o(∆).

A solution of the equation (1) is called the continuity map x: [t0, T ] → X,
which satisfies (1) for t ∈ [t0, T ].

We consider in the domain Q = {∆ ∈ [0, τ), t ∈ [t0, t0 + T ], P ⊂ X} a
quasidifferential equation with impulses

(2) δ(x(t + ∆), ϕ(∆, t, x(t))) = o(∆), t 6= τi(x),

x(τi + 0) = ψi(x(τi)),

where ψi:X → X, x(τi) = x(τi − 0).

3. Main results.

Lemma 1. Let in the domain Q the map ϕ(∆, t, x) satisfy condition D,
Lipschitz condition in ∆ with constant λ, and in x the condition

(3) |δ(x, y) − δ(ϕ(∆, t, x), ϕ(∆, t, y))| ≤ ∆γδ(x, y).

Then for the solutions x(t) and y(t) of quasidifferential equation (1) the
following estimate is correct:

(4) δ(x(t), y(t)) ≤ eγ(t−t0)δ0,

where x(t0) = x0, y(t0) = y0, δ0 = δ(x0, y0).

P r o o f. Let us divide the interval [t0, t0 +T ] into m parts. In the moment
t ∈ [tk, tk+1] ⊂ [t0, t0 + T ], the estimate of the error due to initial conditions is:

δ(x(t), y(t)) ≤ δ(ϕ(t − tk, tk, x(tk)), ϕ(t − tk, tk, y(tk))) + o(∆)

≤ (1 + ∆.γ)δ(x(tk), y(tk)) + o(∆)
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≤ (1 + ∆.γ)δ(ϕ(∆, tk−1, x(tk−1)), ϕ(∆, tk−1, y(tk−1)))

+(1 + ∆γ)o(∆) + o(∆)

≤ (1 + ∆γ)2δ(x(tk−1), y(tk−1)) + o(∆)(1 + ∆γ) + o(∆).

It is easy to check that:

δ(x(t), y(t)) ≤ (1 + ∆γ)k+1δ0 + [(1 + ∆γ)k + . . . + (1 + ∆γ) + 1]o(∆)

≤ (1 +
(t− t0)

m
γ)mδ0 +

(1 + ∆γ)k+1 − 1

∆γ
o(∆)

≤ eγ(t−t0)δ0 +
o(∆)

∆

eγ(τ1−t0)

γ
.(5)

From (5) when ∆ → 0 we obtain (4). �

Theorem 1. Let in the domain Q be fulfilled the conditions of the
Lemma 1 and:

1) the maps ψi(x) are continuous;

2) the functions τi(x) satisfy Lipschitz condition with constant µ;

3) for every x ∈ P is correct the following inequality

(6) τi(x) ≥ τi(ψi(x)).

Then under the condition µλ < 1 every solution x(t, t0, x0) of equation
(2), belonging to domain P in t0 < t ≤ t0 + T , intersects every hypersurface
t = τi(x) in the interval [t0, t0 + T ] just once.

P r o o f. We assume the contrary. Let for some solution x(t), go out
of point ψi(x0) when t = τi(x0) + 0, intersects the surface t = τi(x) in some
point (t⋆i , x

⋆), t⋆i = τi(x
⋆). It is obvious, that t⋆ > τi(x0) and the interval

τi(x0) < t < t⋆i is a interval of continuity of solution x(t, τi(x) + 0, ψi(x0)) and
therefore

t⋆i − τi(x0) = τi(x
⋆) − τi(x0) = τi(x

⋆) − τi(ψi(x0)) + τi(ψi(x0)) − τi(x0)

≤ µδ(x⋆, ψi(x0)) + τi(ψi(x0)) − τi(x0)

≤ µδ(x(t⋆i , τi(x0) + 0, ψi(x0)), x(τi(x0) + 0, τi(x0), ψi(x0)))

+τi(ψi(x0)) − τi(x0)

≤ µλ(t⋆i − τi(x0)) + τi(ψi(x0)) − τi(x0).(7)

From (7) we obtain

(8) (1 − µλ)(t⋆i − τi(x0)) ≤ τi(ψi(x0)) − τi(x0).
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Since (1 − µλ) > 0, t⋆i − τi(x0) > 0 we obtain that (8) contradict to
(6). �

Let x(t, x0) and x(t, y0) be two solutions of equation (2), belonging to
domain P for every t ∈ [t0, t0 + T ]. We suppose, that each of these solutions
intersects every hypersurface t = τi(x) just once, and let us denote with τx0

i , τy0

i

correspondingly moments of intersection of these solutions with surfaces t = τi(x).

Theorem 2. Let the conditions of Theorem 1 be fulfilled and

δ(ψi(x), ψi(y)) ≤ νδ(x, y).

Then

(9) δ(x(t, t0, x0), x(t, t0, y0)) ≤
(λµ+ ν

1 − λµ

)p

eγT δ(x0, y0)

for every t ∈ [τ+
i , τ

−

i+1], where τ−i = min{τx0

i , τy0

i }, τ+
i = max{τx0

i , τy0

i }, p is the
number of the impulses in the interval [t0, t0 + T ].

P r o o f. Let us denote δ−i = δ(x(τ−i , t0, x0), x(τ
−

i , t0, y0)). We suppose

that τ−i = τy0

i , τ+
i = τx0

i . Then

x(τ+
i +0, t0, x0) = ψi(x(τ

+
i , t0, x0)), x(τ

+
i +0, t0, y0) = x(τ+

i , τ
−

i , ψi(x(τ
−

i , t0, y0)))

and

δ(ψi(x(τ
−

i , t0, x0)), ψi(x(τ
+
i , t0, x0)) ≤ νδ(x(τ−i , t0, x0), x(τ

+
i , t0, x0))

≤ νλ|τ+
i − τ−i |,

δ(x(τ+
i , τ

−

i , ψi(x(τ
−

i , t0, y0)), ψi(x(τ
−

i , t0, y0))) ≤ λ|τ+
i − τ−i |,

δ(ψi(x(τ
−

i , t0, y0)), ψi(x(τ
−

i , t0, x0))) ≤ νδ(x(τ−i , t0, x0), x(τ
−

i , t0, y0)) = νδ−i ,

(10)

δ+i = δ(x(τ+
i + 0, t0, x0), x(τ

+
i + 0, t0, y0))

= δ(ψi(x(τ
+
i , t0, x0)), x(τ

+
i , τ

−

i , ψi(x(τ
−

i , t0, y0))

≤ δ(ψi(x(τ
+
i , t0, x0)), ψi(x(τ

−

i , t0, x0)))

+δ(ψi(x(τ
−

i , t0, x0)), ψi(x(τ
−

i , t0, y0)))

+δ(ψi(x(τ
−

i , t0, y0), x(τ
+
i , τ

−

i , ψi(x(τ
−

i , t0, y0))))

≤ λν|τ+
i − τ−i | + νδ−i + λ|τ+

i − τ−i |.
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Let z0 = x0, if τ−i = τy0

i , and z0 = y0, if τ−i = τx0

i then

|τx0

i − τy0

i | = |τi(x(τ
x0

i , t0, x0)) − τi(x(τ
yo

i , t0, y0))|

≤ µδ(x(τx0

i , t0, x0), x(τ
y0

i , t0, y0))

≤ µδ(x(τ−i , t0, x0), x(τ
−

i , t0, y0)) + µδ(x(τx0

i , t0, z0), x(τ
y0

i , t0, z0))

≤ µδ(x(τ−i , t0, x0), x(τ
−

i , t0, y0)) + µλ|τx0

i − τy0

i |.(11)

From (11) we have

(12) |τx0

i − τy0

i | ≤
µδ−i

1 − λµ
.

If we substitute (12) in (10) we obtain

(13) δ+i ≤
λµ+ ν

1 − λµ
δ−i .

It is obviously that (13) is true also for τ−i = τx0

i , τ+
i = τy0

i . From Lemma 1 it
follows that

δ−1 ≤ eγ(τ1−t0)δ0, δ−i+1 ≤ eγ(τ−

i+1
−τ+

i
)δ+i ,

(14) δ(x(t0 + T, t0, x0), x(t0 + T, t0, y0)) ≤ δ+p e
γ(t0+T−τp).

From (13), (14) we obtain that (9) is correct. �

Theorem 3. Let in the domain Q be fulfilled conditions of Theorem
2. If solution x(t, t0, x0) is defined in t ∈ [t0, t0 + T ], then this solution continu-
ously depends from initial value x0 in the following sense: for every ε > 0 there
exists such δ0 = δ(ε) > 0 that for every other solution x(t, t0, y0) of equation (2)
satisfying the inequality δ(x0, y0) < δ0 we have

δ(x(t, t0, x0), x(t, t0, y0)) < ε

for all t ∈ [t0, t0 + T ], which satisfy inequalities |t− τx0

i | > ε, where τx0

i are the
moments of intersection of solution x(t, t0, x0) with hypersurfaces t = τi(x).

The conclusion of this Theorem follows directly from Theorems 1 and 2.

Theorem 4. Let in the domain Q be given quasidifferential equations:

(15) δ(x(t + ∆), ϕ1(∆, t, x(t))) = o(∆), t 6= τ1
i (x), x(t0) = x0,

x(τi + 0) = ψ1
i (x(τi)),

(16) δ(y(t + ∆), ϕ2(∆, t, x))) = o(∆), t 6= τ2
i (x), y(t0) = y0,

y(τi + 0) = ψ2
i (y(τi)).

Let us suppose, that the maps ϕ1(∆, t, x), ϕ2(∆, t, x), ψ
1
i (x), ψ2

i (x), τ
1
i (x), τ2

i (x)
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satisfy condition of Theorem 2 and in addition they satisfy the conditions

(17) |τ1
i (x) − τ2

i (x)| ≤ η, δ(ϕ1(∆, t, x), ϕ2(∆, t, x)) ≤ η∆, δ(ψ1
i (x), ψ2

i (x)) ≤ η.

If solution x(t, t0, x0) of equation (15) is defined in [t0, t0 + T ], then this
solution is continuous in the following sense: for every ε > 0 there exists such
δ0 = δ(ε) > 0 and η0 = η(ε) > 0, that for every solution y(t, t0, y0) of equation
(16) satisfying the inequality δ(x0, y0) < δ0 and inequalities (17) when η < η0, we
have

δ(x(t, t0, x0), y(t, t0, y0)) < ε

for all t ∈ [t0, t0 + T ], which satisfy inequalities |t− τx0

i | > ε, where τx0

i are the
moments of intersection of solution x(t, t0, x0) with hypersurfaces t = τ1

i (x).

P r o o f. Let x(t, t0, x0) and y(t, t0, y0) be solutions of the equations (15)
and (16) respectively ,which belong to the domain P for every t ∈ [t0, t0 + T ].
Each of these solutions intersects every hypersurface t = τ1

i (x) and t = τ2
i (y) just

once, and let us denote with τx0

i , τy0

i correspondingly moments of intersection of
these solutions with surfaces t = τ1

i (x) and t = τ2
i (y).

Let us denote τ−i =min{τx0

i , τy0

i }, τ+
i = max{τx0

i , τy0

i }, δ−i =δ(x(τ−i , t0, x0),

y(τ−i , t0, y0)), δ
+
i = δ(x(τ+

i + 0, t0, x0), y(τ
+
i + 0, t0, y0)).

Then if τ−i = τy0

i , τ+
i = τx0

i we have

x(τ+
i + 0, t0, x0) = ψ1

i (x(τ
+
i , t0, x0)),

y(τ+
i + 0, t0, y0) = y(τ+

i , τ
−

i , ψ
2
i (y(τ−i , t0, y0)))

and

δ(ψ1
i (x(τ−i , t0, x0)), ψ

1
i (x(τ+

i , t0, x0))) ≤ νδ(x(τ−i , t0, x0), x(τ
+
i , t0, x0))

≤ νλ|τ+
i − τ−i |,

δ(y(τ+
i , τ

−

i , ψ
2
i (y(τ

−

i , t0, y0))), ψ
2
i (y(τ−i , t0, y0))) ≤ λ|τ+

i − τ−i |,

δ(ψ2
i (y(τ−i , t0, y0), ψ

1
i (x(τ−i , t0, x0))) ≤ δ(ψ2

i (y(τ−i , t0, y0)), ψ
2
i (x(τ−i , t0, x0)))+

+δ(ψ2
i (x(τ−i , t0, x0)), ψ

1
i (x(τ−i , t0, x0))) ≤ νδ−i + η,

(18)

δ+i ≤ δ(ψ1
i (x(τ+

i , t0, x0)), ψ
1
i (x(τ−i , t0, x0)))

= +δ(ψ1
i (x(τ−i , t0, x0)), ψ

2
i (y(τ−i , t0, y0)))

+δ(ψ2
i (y(τ−i , t0, y0), y(τ

+
i , τ

−

i , ψ
2
i (y(τ−i , t0, y0))))

≤ νλ|τ+
i − τ−i | + νδ−i + λ|τ+

i − τ−i |.
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Let z0 = x0, if τ−i = τy0

i , and z0 = y0,if τ
−

i = τx0

i , then

|τx0

i − τy0

i | = |τ1
i (x(τx0

i , t0, x0)) − τ2
i (y(τy0

i , t0, yo))|

≤ |τ1
i (x(τx0

i , t0, x0)) − τ1
i (y(τy0

i , t0, y0))|+

(19) +|τ1
i (y(τy0

i , t0, y0)) − τ2
i (y(τy0

i , t0, y0))| ≤ µδ−i + µλ|τx0

i − τy0

i | + η.

From (19) we have

(20) |τx0

i − τy0

i | ≤
µδ−i + η

1 − µλ
.

If we substitute (20) in (18) we obtain

(21) δ+i ≤ c1δ
−

i + c2η,

where c1 = (ν + λµ)/(1 − µλ), c2 = (νλ+ λ+ 1 − µλ)/(1 − µλ).

It is obviously that (21) is true also for τ−i = τx0

i , τ+
i = τy0

i .

From Theorem 2 [8] it follows

δ−1 ≤ eγ(τ−

1
−t0)δ0 +

eγ(τ−

1
−t0) − 1

γ
η,

(22) δ−i+1 ≤ eγ(τ−

i+1
−τ+

i
)δ+i +

eγ(τ−

i+1
−τ+

i
) − 1

γ
η,

δ(x(t0 + T, t0, x0), y(t0 + T, t0, y0)) ≤ eγ(t0+T−τp)δ+p +
eγ(t0+T−τp) − 1

γ
η.

From (21), (22) we obtain

(23) δ(x(t, t0, x0), y(t, t0, y0)) ≤
(ν + λµ

1 − µλ

)p

eγT δ0 + Cη,

where C is independent constant from δ0 and η.

From (23) and (20) it follows the conclusion of the Theorem. �

4. Examples.

Example 1. Let X = R
n and

ϕ1(∆, t, x) = x+ ∆ · f(t, x),

ϕ2(∆, t, x) = x+ ∆ · (f(t, x) +R(t, x)),

(24) ψ1i(x) = x+ Ii(x), ψ2i(x) = x+ Ii(x) +Ri(x).

Then from Theorem 4 we can obtain the corresponding theorem for dif-
ferential equation with impulses:

ẋ = f(t, x), t 6= τ1
i (x), x(t0) = x0,



160 V. A. Plotnikov, P. M. Kitanov

∆x|t=τ1
i
(x) = Ii(x),

ẏ = f(t, y) +R(t, y), t 6= τ2
i (y), y(t0) = y0,

∆y|t=τ2
i
(y) = Ii(y) +Ri(y).

Example 2. Let X = comp(Rn) where this space is the space of all
nonempty compact sets within R

n.
Let conv(Rn) be the space of nonempty convex and compact sets within

R
n,

ϕ1(∆, t, Y ) =
⋃

z∈Y

(

z +

∫ t+∆

t

F (t, z)dt
)

,

ϕ2(∆, t, Y ) =
⋃

z∈Y

(

z +

∫ t+∆

t

(F (t, z) +R(t, z))dt
)

,

ψ1
i (Y ) =

⋃

z∈Y

(z + Ii(z)),

ψ2
i (Y ) =

⋃

z∈Y

(z + Ii(x) +Ri(z)),

where

F : R1 × R
n → conv(Rn), R: R1 × R

n → conv(Rn),

(25) Ii: R
n → conv(Rn), Ri: R

n → conv(Rn), τ1
i (x) = τ2

i (x) ≡ ti.

From Theorem 4 we obtain corresponding theorem for differential inclu-
sions with impulses:

(26) ẋ ∈ F (t, x), t 6= ti, x(t0) = x0, ∆x|t=ti ∈ Ii(x),

ẏ ∈ F (t, y) +R(t, y), t 6= ti, y(t0) = y0, ∆y|t=ti ∈ Ii(y) +Ri(y).

The multivalued solutions Y (t, t0, x0) of differential inclusion (26) should
be understood as R – solution [2, 3].

If τ j
i (x) 6≡ const , then τ j

i : comp(Rn) → R
1.

In this case if

(27) τi(Y ) = min
z∈Y

ρi(z) or τi(Y ) = max
z∈Y

ρi(z),

from Theorem 4 we obtain corresponding theorem for differential inclusions with
impulses:

ż ∈ F (t, z), , t 6= ρi(z), z(t0) = z0,

(28) ∆z|t=ρi
∈ Ii(z).
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The multivalued solution Y (t, t0, z0) of differential inclusion (28) should
be understood as R-solution and on hypersurfaces t = ρi(z) all solution’s bundle
undergo impulse when the first (or the last ) solution z(t, t0, x0) belonging to
this bundle reaches the surface t = ρi(z). Analogous meaning gets condition (6).
If we define functions τi(Y ) by different way from (27), we can obtain different
conditions for impulses of all bundle of trajectories.

If X = comp(Rn) then from Theorem 4 for quasidifferential equation
(2),(24) we can obtain the corresponding theorem for differential equation with
Hukuhara derivative [9] with impulses:

DY (t) = F (t, Y (t)), t 6= τ1
i (Y ),

Y (τ1
i + 0) = ψ(Y (τ1

i )),

where DY (t) is Hukuhara derivative [10] for a multivalued function Y (t), F : R1×
conv(Rn) → conv(Rn).

Remark 1. The proof of Theorem 4 is completely the same for quasi-
differential equation with variable structure

δ(x(t+ ∆), ϕi(∆, t, x(t))) = o(∆), τi(x) < t ≤ τi+1(x), x(t0) = x0,

x(τi + 0) = ψi(x(τi)).

Impulsive differential equations with variable structure have been consid-
ered in [11]–[13].
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