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Abstract. Existence theorems of generalized variational inequalities and
generalized complementarity problems are obtained in topological vector
spaces for demi operators which are upper hemicontinuous along line seg-
ments in a convex set X . Fixed point theorems are also given in Hilbert
spaces for set-valued operators T which are upper hemicontinuous along
line segments in X such that I − T are demi operators.

1. Introduction. Throughout this paper R denotes the set of all real
numbers. If A is a set, we shall denote by 2A \ {Ø} the family of all non-empty
subsets of A and by F(A) the family of all non-empty finite subsets of A. If A is
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a subset of a topological space X, we shall denote by intX(A) the interior of A
in X and by clX(A) the closure of A in X. If A is a subset of a vector space, we
shall denote by co(A) the convex hull of A.

Let X and Y be topological spaces and T : X → 2Y \{Ø}. Then T is said
to be (i) upper (respectively, lower) semicontinuous at x0 ∈ X if for each open set
G in Y with T (x0) ⊂ G (respectively, with T (x0)∩G 6= Ø), there exists an open
neighbourhood U of x0 in X such that T (x) ⊂ G (respectively, T (x) ∩ G 6= Ø)
for all x ∈ U ; (ii) upper (respectively, lower) semicontinuous on X if T is upper
(respectively, lower) semicontinuous at each point of X.

The following result which is Theorem 1 in [6] is a generalization of the
celebrated 1972 Ky Fan’s minimax inequality [9, Theorem 1].

Theorem A. Let E be a topological vector space, X be a non-empty
convex subset of E, h : X → R be lower semicontinuous on co(A) for each
A ∈ F(X) and f : X ×X → R ∪ {−∞,+∞} be such that

(a) for each A ∈ F(X) and each fixed x ∈ co(A), y 7−→ f(x, y) is lower
semicontinuous on co(A);

(b) for each A ∈ F(X) and each y ∈ co(A), minx∈A[f(x, y)+h(y)−h(x)] ≤
0;

(c) for each A ∈ F(X) and each x, y ∈ co(A) and every net {yα}α∈Γ in
X converging to y with

f(tx+ (1− t)y, yα) + h(yα)− h(tx+ (1− t)y) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1],

we have f(x, y) + h(y) − h(x) ≤ 0;
(d) there exist a non-empty closed and compact subset K of X and x0 ∈ K

such that f(x0, y) + h(y) − h(x0) > 0 for all y ∈ X\K.
Then there exists ŷ ∈ K such that f(x, ŷ) ≤ h(x) − h(ŷ) for all x ∈ X.

We shall use the following Kneser’s minimax theorem [11, pp. 2418-2420]
(see also Aubin [1, pp. 40-41]:

Theorem B. Let X be a non-empty convex subset of a vector space and
Y a non-empty compact convex subset of a Hausdorff topological vector space.
Suppose that f is a real-valued function on X×Y such that for each fixed x ∈ X,

f(x, y) is lower semicontinuous and convex on Y and for each fixed y ∈ Y, f(x, y)
is concave on X. Then

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).
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We shall first introduce the notions of h-demi and demi operators in Sec-
tion 2 of this paper. As applications we shall present some existence theorems
of generalized variational inequalities and existence theorems of generalized com-
plementarity problems for upper hemicontinuous and demi operators in Section
3. Our results will extend the corresponding results in [2], [6], [7] and [13].

Finally, we shall investigate some fixed point theorems in Hilbert spaces
which will extend some corresponding fixed point theorems in the literature, e.g.,
see [2], [6], [7] and [13].

2. Preliminaries. Let E be a topological vector space. We shall denote
by E∗ the continuous dual of E, by 〈w, x〉 the pairing between E∗ and E for
w ∈ E∗ and x ∈ E and by Re〈w, x〉 the real part of 〈w, x〉.

Let X be a non-empty subset of E. Then X is a cone in E if X is convex
and λX ⊂ X for all λ ≥ 0. If X is a cone in E, then X̂ = {w ∈ E∗ : Re〈w, x〉 ≥
0 for all x ∈ X} is also a cone in E∗, called the dual cone of X.

Let y ∈ E. Then the inward set of y with respect to X is the set IX(y) =
{x ∈ E : x = y + r(u− y) for some u ∈ X and r > 0}.

For each x0 ∈ E, each non-empty subset A of E and each ǫ > 0, let
W (x0; ǫ) := {y ∈ E∗ : |〈y, x0〉| < ǫ} and U(A; ǫ) := {y ∈ E∗ : supx∈A |〈y, x〉| < ǫ}.
Let σ〈E∗, E〉 be the (weak∗) topology on E∗ generated by the family {W (x; ǫ) :
x ∈ E and ǫ > 0} as a subbase for the neighborhood system at 0 and δ〈E∗, E〉 be
the (strong) topology on E∗ generated by the family {U(A; ǫ) : A is a non-empty
bounded subset of E and ǫ > 0} as a base for the neighborhood system at 0. We
note that E∗, when equipped with the (weak∗) topology σ〈E∗, E〉 or the (strong)
topology δ〈E∗, E〉, becomes a locally convex Hausdorff topological vector space.
Furthermore, for a net {yα}α∈Γ in E∗ and for y ∈ E∗, (i) yα → y in σ〈E∗, E〉 if
and only if 〈yα, x〉 → 〈y, x〉 for each x ∈ E and (ii) yα → y in δ〈E∗, E〉 if and
only if 〈yα, x〉 → 〈y, x〉 uniformly for x ∈ A for each non-empty bounded subset
A of E.

The following Definition is Definition 2.1(b) in [7]:

Definition 1. Let E be a topological vector space and X be a non-
empty subset of E. Let T : X → 2E∗

\ {Ø} be a map. Then T is said to be
upper hemicontinuous on X if and only if for each p ∈ E, the function fp : X →
R ∪ {+∞} defined by

fp(z) = sup
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is upper semicontinuous on X (if and only if for each p ∈ E, the function gp :
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X → R ∪ {−∞} defined by

gp(z) = inf
u∈T (z)

Re〈u, p〉 for each z ∈ X,

is lower semicontinuous on X).

Note that if X is convex, then the notion of upper hemicontinuity along
line segments in X is independent of the vector topology τ on E as long as τ is
Hausdorff and the continuous dual E∗ remains unchanged. Note also that if T ,
S : X → 2E∗

\ {Ø} are upper hemicontinuous and α ∈ R, then T +S and αT are
also upper hemicontinuous.

The following is Proposition 2.4 in [7]:

Proposition 1. Let E be a topological vector space and X be a non-
empty subset of E. Let T : X → 2E∗

\ {Ø} be upper semicontinuous from
relative topology on X to the weak∗ topology σ〈E∗, E〉 on E∗. Then T is upper
hemicontinuous on X.

Note that there is a typo in Proposition 2.4 in [7]. The convexity of X is
not needed.

The converse of Proposition 1 is not true in general as can be seen in
Example 2.5 in [7] which is Example 2.3 in [15, p. 392]:

We shall now introduce the following definition:

Definition 2. Let E be a topological vector space, X be a non-empty
subset of E and T : X → 2E∗

\{Ø}. If h : X → R, then T is said to be an h-demi
(respectively, a strong h-demi) operator if for each y ∈ X and every net {yα}α∈Γ

in X converging to y (respectively, weakly to y) with

lim sup
α∈Γ

[ inf
u∈T (y)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0

we have

lim sup
α∈Γ

[ inf
u∈T (x)

Re〈u, yα − x〉 + h(yα) − h(x)] ≥ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)

for all x ∈ X.

T is said to be a demi (respectively, strong demi) operator if T is an
h-demi (respectively, a strong h-demi) operator with h ≡ 0.

Clearly, a strong h-demi operator is also an h-demi operator.
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As application of Definition 2, we shall obtain fixed point theorems in
Hilbert spaces in Section 4.

For further applications of Definition 2, we refer the readers to [8].

The following is essentially a result of S. C. Fang (e.g. see [5] and [14, p.
59]) (see also [16, Lemma 2.4.2]):

Lemma 1. Let X be a cone in a Hausdorff topological vector space E
and T : X → 2E∗

\ {Ø} be a map. Then the following statements are equvalent:
(a) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ − x〉 ≤ 0 for all

x ∈ X.
(b) There exist ŷ ∈ X and ŵ ∈ T (ŷ) such that Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

The following simple result is Lemma 2.1.6 in [16]:

Lemma 2. Let E be a topological vector space and A be a non-empty
bounded subset of E. Let C be a non-empty strongly compact subset of E∗. Define
f : A→ R by f(x) = minu∈C Re〈u, x〉 for all x ∈ A. Then f is weakly continuous
on A.

The following proposition justifies the validity of a demi operator.

Proposition 2. Let X be a non-empty bounded subset of a topological
vector space E, h : X → R be weakly lower semicontinuous and T : X → 2E∗

\{Ø}
be an operator such that each T (x) is strongly compact. Then T is an h-demi
and a strong h-demi operator.

P r o o f. Suppose y ∈ X and {yα}α∈Γ is a net in X converging to y

(respectively, weakly to y) with

lim sup
α

[ inf
u∈T (y)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0.

Then for each x ∈ X,

lim sup
α

[ inf
u∈T (x)

Re〈u, yα − x〉 + h(yα) − h(x)]

≥ lim inf
α

[ inf
u∈T (x)

Re〈u, yα − x〉 + h(yα) − h(x)]

≥ lim inf
α

[ inf
u∈T (x)

Re〈u, yα − y〉] + lim inf
α

h(yα) − h(x) + inf
u∈T (x)

Re〈u, y − x〉

≥ inf
u∈T (x)

Re〈u, y − x〉 + h(y) − h(x)

since lim infα infu∈T (x)Re〈u, yα − y〉 = infu∈T (x)Re〈u, y − y〉 = 0 by Lemma 2.
Hence T is an h-demi (respectively, a strong h-demi) operator. �
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From Proposition 2 we see that every operator with strongly compact im-
age satisfying the hypotheses of Proposition 2, is an h-demi and a strong h-demi
operator. Thus the set of all demi operators contains all demi-monotone [6, Def-
inition 1] and semi-monotone [2, p. 238-240] operators satisfying the hypotheses
of Proposition 2.

We shall now prove the following lemma:

Lemma 3. Let E be a Hausdorff topological vector space, A ∈ F(E),
X = co(A) and C be a non-empty weak∗-compact subset of E∗. Let f : X×X → R

be defined by f(x, y) = infw∈C Re〈w, y − x〉 for all x, y ∈ X. Then for each fixed
x ∈ X, y 7−→ f(x, y) is continuous on X.

P r o o f. Clearly, f is upper semicontinuous on X. It remains to show
that f is also lower semicontinuous on X. Let λ ∈ R be given and x ∈ X be
arbitrarily fixed. Let Cλ = {y ∈ X : f(x, y) ≤ λ}. Suppose {yα}α∈Γ is a net
in Cλ and y0 ∈ X such that yα → y0. Then for each α ∈ Γ, λ ≥ f(x, yα) =
infw∈C Re〈w, yα − x〉 so that by weak∗-compactness of C, there exists wα ∈ C

such that λ ≥ infw∈C Re〈w, yα−x〉 = Re〈wα, yα−x〉. Since C is weak∗-compact,
there is a subnet {wα′}α′∈Γ′ of {wα}α∈Γ and w0 ∈ E∗ with wα′ → w0 in the
weak∗-topology. Again, as C is also weak∗-closed, w0 ∈ C.

Suppose A = {a1, · · · , an} and let t1, · · · , tn ≥ 0 with
∑n

i=1 ti = 1 such
that y0 =

∑n
i=1 tiai. For each α′ ∈ Γ, let tα

′

1 , · · · , t
α′

n ≥ 0 with
∑n

i=1 t
α′

i = 1 such
that yα′ =

∑n
i=1 t

α′

i ai. Since E is Hausdorff and yα′ → y0, we must have tα
′

i → ti
for each i = 1, · · · , n. Thus

λ ≥ Re〈wα′ , yα′ − x〉

=

n∑

i=1

tα
′

i Re〈wα′ , ai − x〉

−→

n∑

i=1

tiRe〈w0, ai − x〉

= Re〈w0,

n∑

i=1

ti(ai − x)〉 = Re〈w0, y0 − x〉

so that λ ≥ infw∈C Re〈w, y0−x〉 = f(x, y0) and hence y0 ∈ Cλ. Thus Cλ is closed
in X for each λ ∈ R. Therefore y 7−→ f(x, y) is lower semicontinuous on X. �

We obtain the following proposition by slight modification of Proposition
2 and by applying Lemma 3.
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Proposition 3. Let E be a Hausdorff topological vector space, A ∈ F(E)
and X = co(A). Let h : X → R be lower semicontinuous and T : X → 2E∗

\ {Ø}
be an operator such that each T (x) is weak∗-compact. Then T is an h-demi and
a strong h-demi operator.

The following is an example of a demi operator:

Example 1. Let T : [−1, 1] → 2R \ {Ø} be defined by

T (x) =

{
[0, 2x], if x ≥ 0;

[2x, 0], if x < 0.

Now, [−1, 1] = co(B), where B = {−1, 1} ∈ F(R) and each T (x) is compact in
the usual topology (and therefore in the weak topology) of R. Hence by Proposition
3, T is a demi operator.

Moreover for each A ∈ F([−1, 1]) and each y ∈ co(A) there exist x ∈ A

and u ∈ T (x) such that

Re〈u, y − x〉 = 〈u, y − x〉 = u(y − x) ≤ 0.

This fact will justify the validity of a hypothesis (based on this fact) in Theorem
1 of the following Section 3.

3. Variational inequalities. In this section we shall present some ex-
istence theorems of generalized variational inequalities and generalized comple-
mentarity problems for upper hemicontinuous and demi operators.

The following result is Lemma 4.3 in [7]:

Lemma 4. Let E be a topological vector space, X be a non-empty
subset of E and h : E → R be convex. Suppose ŷ ∈ X and ŵ ∈ E∗ are such that
Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X, then Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for
all x ∈ IX(ŷ).

The following result is Lemma 4.2 in [7]:

Lemma 5. Let E be a topological vector space, X be a non-empty convex
subset of E, h : X → R be convex and T : X → 2E∗

\{Ø} be upper hemicontinuous
along line segments in X. Suppose ŷ ∈ X is such that inf

u∈T (x)
Re〈u, ŷ − x〉 ≤

h(x) − h(ŷ) for all x ∈ X. Then

inf
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.
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We shall now establish the following result:

Theorem 1. Let X be a non-empty convex subset of a Hausdorff
topological vector space E and h : E → R be convex. Let T : X → 2E∗

\ {Ø} be
an h-demi (respectively, a strong h-demi) operator and be upper hemicontinuous
along line segments in X to the weak∗-topology on E∗ such that each T (x) is
weak∗-compact convex. Suppose that for each A ∈ F(X) and each y ∈ co(A)
there exist x ∈ A and u ∈ T (x) such that Re〈u, y − x〉 + h(y) − h(x) ≤ 0.
Suppose further that there exist a non-empty compact (respectively, weakly closed
and weakly compact) subset K of X and x0 ∈ K such that for each y ∈ X \K,
infu∈T (x0)Re〈u, y−x0〉+h(y)−h(x0) > 0. Then there exists ŷ ∈ K and ŵ ∈ T (ŷ)
such that Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX(ŷ).

P r o o f. We first note that for each A ∈ F(X), h is continuous on co(A)
(see e.g. [12, Corollary 10.1.1, p. 83]). Define φ : X ×X → R ∪ {−∞,+∞} by
φ(x, y) = minu∈T (x)Re〈u, y − x〉, for each x, y ∈ X. Then we have the following.

(a) Clearly, for each A ∈ F(X) and each fixed x ∈ co(A), since E is
Hausdorff and co(A) is compact, and the relative weak topology on co(A) coincide
with its relative topology; it follows that y 7−→ φ(x, y) is lower semicontinuous
(respectively, weakly lower semicontinuous) on co(A), by Lemma 3.

(b) By hypothesis, for each A ∈ F(X) and each y ∈ co(A), there exist
x ∈ A and u ∈ T (x) such that Re〈u, y − x〉 + h(y) − h(x) ≤ 0. It follows that
for each A ∈ F(X) and each y ∈ co(A), minx∈A[minu∈T (x)Re〈u, y − x〉 + h(y) −
h(x)] ≤ minu∈T (x)Re〈u, y−x〉+h(y)−h(x) ≤ 0. Thus we have minx∈A[φ(x, y)+
h(y) − h(x)] ≤ 0, for each A ∈ F(X) and each y ∈ co(A).

(c) Suppose that A ∈ F(X), x, y ∈ co(A) and {yα}α∈Γ is a net in X with
yα → y in the relative topology (respectively, relative weak topology) such that

φ(tx+(1−t)y, yα)+h(yα)−h(tx+(1−t)y) ≤ 0 for all α ∈ Γ and all t ∈ [0, 1].

Then for t = 0 we have φ(y, yα) + h(yα) − h(y) ≤ 0 for all α ∈ Γ so that
minu∈T (y)Re〈u, yα − y〉 + h(yα) − h(y) ≤ 0 for all α ∈ Γ. Hence

lim sup
α∈Γ

[ min
u∈T (y)

Re〈u, yα − y〉 + h(yα) − h(y)] ≤ 0.

Since T is an h-demi (respectively, a strong h-demi) operator on X, we have

(3.1) lim sup
α∈Γ

[ min
u∈T (x)

Re〈u, yα−x〉+h(yα)−h(x)]≥ min
u∈T (x)

Re〈u, y−x〉+h(y)−h(x).

For t = 1 we also have φ(x, yα) + h(yα) − h(x) ≤ 0 for all α ∈ Γ. Thus
minu∈T (x)Re〈u, yα − x〉 + h(yα) − h(x) ≤ 0 for all α ∈ Γ. It follows that

(3.2) lim sup
α∈Γ

[ min
u∈T (x)

Re〈u, yα − x〉 + h(yα) − h(x)] ≤ 0.
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Hence by (3.1) and (3.2),

min
u∈T (x)

Re〈u, y−x〉+h(y)−h(x) ≤ lim sup
α∈Γ

[ min
u∈T (x)

Re〈u, yα−x〉+h(yα)−h(x)] ≤ 0.

Consequently, φ(x, y) + h(y) − h(x) ≤ 0.
(d) By assumption, K is a compact and therefore closed (respectively,

weakly closed and weakly compact) subset of X and x0 ∈ K such that for each
y ∈ X \K, infu∈T (x0)Re〈u, y − x0〉 + h(y) − h(x0) > 0; it follows that for each
y ∈ X \K,

min
u∈T (x0)

Re〈u, y − x0〉 + h(y) − h(x0) > 0,

i.e.,
φ(x0, y) + h(y) − h(x0) > 0.

(If T is a strong h-demi operator, we equip E with the weak topology.)
Then φ satisfies all the hypotheses of Theorem A. Hence by Theorem A, there
exists a point ŷ ∈ K with

φ(x, ŷ) ≤ h(x) − h(ŷ) for all x ∈ X;

in other words,

min
u∈T (x)

Re〈u, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Since h is convex and T is upper hemicontinuous along line segments in X, by
Lemma 5 we have

min
w∈T (ŷ)

Re〈w, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.

Define ψ : X × T (ŷ) → R by

ψ(x,w) = Re〈w, ŷ − x〉 + h(ŷ) − h(x), for all x ∈ X and for all w ∈ T (ŷ).

Note that T (ŷ) is weak∗-compact convex, and for each fixed x ∈ X, w 7−→ ψ(x,w)
is weak∗ continuous and convex and for each fixed w ∈ T (ŷ), x 7−→ ψ(x,w) is
concave. Hence by Theorem B we have

min
w∈T (ŷ)

sup
x∈X

(Re〈w, ŷ−x〉+h(ŷ)−h(x)) = sup
x∈X

min
w∈T (ŷ)

(Re〈w, ŷ−x〉+h(ŷ)−h(x)) ≤ 0.

Hence, by (weak∗) compactness of T (ŷ), there exists a point ŵ ∈ T (ŷ) such that

(3.3) Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ X.
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Since h is defined on all of E and is convex, by (3.3) and Lemma 4, we have
Re〈ŵ, ŷ − x〉 ≤ h(x) − h(ŷ) for all x ∈ IX(ŷ). �

Remark 1. Theorem 1 extends Theorem 5 of Bae-Kim-Tan in [2, p.
238-240] in the following ways:

(1) T is an h-demi (or a strong h-demi) operator instead of a semi-
monotone [2, pp. 236-237] operator,

(2) T is upper hemicontinuous along line segments instead of upper semi-
continuous along line segments in X.

Note however that the coercive conditions in our Theorem 1 here and in
Theorem 5 of [2] are not comparable.

Theorem 1 also extends Application 3 in [3, p. 297] in the following ways:
(3) T is a set-valued h-demi (or a strong h-demi) operator and is upper

hemicontinuous along line segments in X to the weak∗ topology on E∗ instead
of single-valued pseudo-monotone [3, p. 297] and continuous on any finite dimen-
sional subspace,

(4) h need not be lower semicontinuous on X.

By taking h ≡ 0 in Theorem 1 and applying Lemma 1 we have the
following existence theorem of a generalized complementarity problem:

Theorem 2. Let X be a cone in a Hausdorff topological vector space
E. Let T : X → 2E∗

\ {Ø} be a demi (respectively, a strong demi) operator and
be upper hemicontinuous along line segments in X to the weak∗-topology on E∗

such that each T (x) is weak∗-compact convex. Suppose that for each A ∈ F(X)
and each y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that Re〈u, y − x〉 ≤ 0.
Suppose further that there exist a non-empty compact (respectively, weakly closed
and weakly compact) subset K of X and x0 ∈ K such that for each y ∈ X\K,
infu∈T (x0)Re〈u, y − x0〉 > 0. Then there exist ŷ ∈ K and ŵ ∈ T (ŷ) such that

Re〈ŵ, ŷ〉 = 0 and ŵ ∈ X̂.

Thus we see that Theorem 2 follows from Theorem 1 with h ≡ 0 by
applying Lemma 1. Since X needs to be a cone in Theorem 2, we see that
Theorem 2 does not imply Theorem 1 in general. Hence Theorem 1 and Theorem
2 are not equivalent in general.

4. Fixed point theorems. In this section H denotes a Hilbert space
with inner product 〈 , 〉 and the corresponding induced norm ‖ · ‖. Let d denote
the metric on H induced by this norm ‖ · ‖.
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If X is a non-empty subset of H, we shall denote by ∂H(X) the boundary
of X in H. We shall denote by bc(H) the family of all non-empty bounded closed
subsets of H. Then the Hausdorff metric D on bc(H) induced by the metric d is
defined by

D(A1, A2) = inf{r > 0 : A1 ⊂ Br(A2) and A2 ⊂ Br(A1)}

= max{ sup
x∈A1

d(x,A2), sup
y∈A2

d(y,A1)},

where d(x,A) = inf{‖x− y‖ : y ∈ A} and Br(A) = {x ∈ H : d(x,A) < r} for any
A ∈ 2H and r > 0. (If A = {y}, we shall write Br(A) = Br(y).)

If X is a non-empty subset of H, a map T : X → 2H \ {Ø} is said to be
pseudo-contractive on X [2, p. 240] if for each x, y ∈ X, and each w ∈ T (y), there
exists u ∈ T (x) such that ‖x− y‖ ≤ ‖(1 + r)(x− y) − r(u− w)‖ for all r > 0.

A map T : X → bc(H) is said to be nonexpansive on X if for each
x, y ∈ X, D(T (x), T (y)) ≤ ‖x− y‖.

Let K be a non-empty closed convex subset of a Hilbert space H. For
each x ∈ H, there is a unique point πK(x) in K such that

‖x− πK(x)‖ = inf
z∈K

‖x− z‖.

πK(x) is called the projection of x on K.

The following result which is Theorem 1.2.3 in [10, p. 9] will characterize
the projection πK(x) of x on K as illustrated:

Proposition 4. Let K be a non-empty closed convex subset of H. Then
for each x ∈ H and y ∈ K, y = πK(x) if and only if

Re〈x− y, z − y〉 ≤ 0 for all z ∈ K.

As an application of Theorem 1, we have the following fixed point theo-
rem:

Theorem 3. Let X be a non-empty convex subset of H and T : X →
2H \ {Ø} be an upper hemicontinuous map along line segments in X to the weak
topology on H such that each T (x) is weakly compact convex and I−T is a demi
(respectively, a strong demi) operator. Suppose that for each A ∈ F(X) and each
y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that Re〈x−u, y−x〉 ≤ 0. Suppose
further that there exist a non-empty compact (respectively, weakly compact) subset
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K of X and x0 ∈ K such that for each y ∈ X\K, infu∈T (x0)Re〈x0−u, y−x0〉 > 0.
Then there exists ŷ ∈ K and ŵ ∈ T (ŷ) such that

Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ).

Moreover, if either ŷ is an interior point of X in H or πT (ŷ)(ŷ) ∈ IX(ŷ), then ŷ

is a fixed point of T , i.e., ŷ ∈ T (ŷ).

P r o o f. (If I − T is a strong demi operator, we equip H with the weak
topology.) Since T is upper hemicontinuous along line segments in X, I − T :
X → 2H \{Ø} is also upper hemicontinuous along line segments in X and satisfies
all the hypotheses of Theorem 1 with h ≡ 0, thus there exists ŷ ∈ K and ŵ ∈ T (ŷ)
such that Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ). By continuity of ŵ,

(4.1) Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ).

Case 1. Suppose ŷ is an interior point of X in H, i.e., ŷ ∈ intHX, then there
exists r > 0 such that Br(ŷ) ⊂ X. Then for each z ∈ H with z 6= ŷ, let
u = ŷ+ r

2 ·
ŷ−z

‖ŷ−z‖ , then u ∈ Br(ŷ) ⊂ X ⊂ IX(ŷ). Thus Re〈ŷ− ŵ, r
2 ·

z−ŷ
‖ŷ−z‖〉 ≤ 0 so

that r
2‖ŷ−z‖Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 and hence Re〈ŷ − ŵ, z − ŷ〉 ≤ 0 for all z ∈ H.

It follows that Re〈ŷ − ŵ, z〉 = 0 for all z ∈ H so that ŷ = ŵ ∈ T (ŷ).

Case 2. Suppose p := πT (ŷ)(ŷ) ∈ IX(ŷ). By Proposition 4, the projection p of ŷ
on T (ŷ) has the following property:

(4.2) p ∈ T (ŷ) and Re〈ŷ − p,w − p〉 ≤ 0 for all w ∈ T (ŷ).

Since ŵ ∈ T (ŷ), by (4.2) we have

0 ≤ Re〈p− ŷ, ŵ − p〉

= Re〈p− ŷ, ŵ − ŷ + ŷ − p〉

= Re〈p− ŷ, ŵ − ŷ〉 − ‖ŷ − p‖2.

Therefore

‖ŷ − p‖2 ≤ Re〈ŷ − ŵ, ŷ − p〉 ≤ 0 by (4.1).

Thus ŷ = p = πT (ŷ)(ŷ) ∈ T (ŷ). �

If we compare our Theorem 3 with Theorem 6 in [2], we see that the
pseudo-contractivity (see definition in [2]) of T is not required here. But the
coercive conditions of our Theorem 3 here and the Theorem 6 in [2] are not
comparable.
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By Theorem 3 and Proposition 3, we have the following corollary:

Corollary 1. Let X = co(B), for some B ∈ F(H) and T : X → 2H \
{Ø} be upper hemicontinuous along line segments in X to the weak topology on H
such that each T (x) is weakly compact convex. Suppose that for each A ∈ F(X)
and each y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that Re〈x−u, y−x〉 ≤ 0.
Then there exists ŷ ∈ X and ŵ ∈ T (ŷ) such that

Re〈ŷ − ŵ, ŷ − x〉 ≤ 0 for all x ∈ IX(ŷ).

Moreover, if either ŷ is an interior point of X in H or πT (ŷ)(ŷ) ∈ IX(ŷ), then ŷ

is a fixed point of T , i.e., ŷ ∈ T (ŷ).

Note that, by Proposition 3, both T and I − T are demi operators in
Corollary 1.

The following fixed point theorem is an immediate consequence of Theo-
rem 3:

Theorem 4. Let X be a non-empty convex subset of H and T : X →
bc(H) be upper hemicontinuous along line segments in X to the weak topology
on H such that each T (x) is weakly compact and convex and I − T is a demi
(respectively, a strong demi) operator. Suppose that for each A ∈ F(X) and each
y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that Re〈x−u, y−x〉 ≤ 0. Suppose
further that there exist a non-empty compact (respectively, weakly compact) subset
K of X and x0 ∈ K such that (i) for each y ∈ K ∩ ∂H(X), πT (y)(y) ∈ IX(y) and
(ii) for each y ∈ X \K, infu∈T (x0)Re〈x0 − u, y − x0〉 > 0. Then T has a fixed
point in K.

In view of Proposition 3, we have the following immediate consequence of
Theorem 4:

Corollary 2. Let X = co(B), for some B ∈ F(H) and T : X → bc(H)
be upper hemicontinuous along line segments in X to the weak topology on H

such that each T (x) is weakly compact convex. Suppose that for each A ∈ F(X)
and each y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that Re〈x−u, y−x〉 ≤ 0.
Suppose further that for each y ∈ ∂H(X), πT (y)(y) ∈ IX(y). Then T has a fixed
point in X.

By Theorem 4 and Proposition 2, we have the following corollary:

Corollary 3. Let X be a non-empty bounded convex subset of H and
T : X → bc(H) be upper hemicontinuous along line segments in X to the weak
topology on H such that each T (x) is (norm) compact and convex. Suppose that
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for each A ∈ F(X) and each y ∈ co(A) there exist x ∈ A and u ∈ T (x) such
that Re〈x − u, y − x〉 ≤ 0. Suppose further that there exist a non-empty weakly
compact subset K of X and x0 ∈ K such that (i) for each y ∈ K ∩ ∂H(X),
πT (y)(y) ∈ IX(y) and (ii) for each y ∈ X \K, infu∈T (x0)Re〈x0 − u, y − x0〉 > 0.
Then T has a fixed point in K.

It will be interesting to compare Corollary 3 with Theorem 6 of Bae-Kim-
Tan in [2, pp. 242-243].

Corollary 4. Let X be a non-empty compact (respectively, bounded
closed) convex subset of H and T : X → bc(H) be upper hemicontinuous along
line segments in X to the weak topology on H such that each T (x) is (norm)
compact convex. Suppose that for each A ∈ F(X) and each y ∈ co(A) there exist
x ∈ A and u ∈ T (x) such that Re〈x−u, y−x〉 ≤ 0. Suppose further that for each
y ∈ ∂H(X), πT (y)(y) ∈ IX(y). Then T has a fixed point in X.

Corollary 5. Let X be a non-empty compact (respectively, bounded
closed) convex subset of H and T : X → bc(X) be upper hemicontinuous along
line segments in X to the weak topology on H such that each T (x) is (norm)
compact convex. Suppose that for each A ∈ F(X) and each y ∈ co(A) there exist
x ∈ A and u ∈ T (x) such that Re〈x− u, y − x〉 ≤ 0. Then T has a fixed point in
X.

The following result also follows from Corollary 4:

Corollary 6. Let X be a non-empty bounded closed convex subset of H
and T : X → bc(H) be upper semi-continuous along line segments in X to the
weak topology on H such that each T (x) is (norm) compact convex. Suppose that
for each A ∈ F(X) and each y ∈ co(A) there exist x ∈ A and u ∈ T (x) such that
Re〈x−u, y−x〉 ≤ 0. Suppose further that for each y ∈ ∂H(X), πT (y)(y) ∈ IX(y).
Then T has a fixed point in X.

It will be interesting to the readers to compare Corollary 6 with Browder’s
fixed point theorem [4, Theorem 1].

For further applications of upper hemicontinuous and demi operators in
generalized quasi-variational inequalities on non-compact sets, we refer to [8].
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