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SPACE WITH SMOOTH BUMP

I. Kortezov
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Abstract. We prove that if a Banach space X admits a Lipschitz β-smooth
bump function, then (X∗, weak∗) is fragmented by a metric, generating a
topology, which is stronger than the τβ-topology. We also use this to prove
that if X∗ admits a Lipschitz Gâteaux-smooth bump function, then X is
sigma-fragmentable.

In [12] the authors proved that if a real Banach space admits an equivalent

β-smooth norm, then every continuous convex function f defined on an open

subset U of X is generically β-differentiable, that is, f is β-differentiable at the

points of some dense Gδ subset of U . In particular, X is weak Asplund when we

speak about the Gâteaux bornology. In [2] it was described how to weaken the

hypothesis in this case, namely that the existence of Lipschitz Gâteaux-smooth

bump is sufficient to guarantee that X is weak Asplund. Later, Li Yongxin

and Shi Shuzhong [10] strenghtened the result of [12] in the general case (for

generical β-differentiability) by proving that the conclusion in [12] is true even if
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the Banach space only admits a Lipschitz β-smooth bump function. This result

is generalised there in the terms of minimal weak∗ usco mappings ([10, Theorem

2], see Corollary 2 here). Meanwhile, Ribarska [14] has shown that if a Banach

space X admits an equivalent β-smooth norm, then (X∗, weak∗) is fragmented

by a metric, generating a topology, which is stronger than the τβ-topology (see

the definition), which is formally stronger than the results in [12]. Here we shall

see that the existence of a Lipschitz β-smooth bump is sufficient for the same

conclusion (Theorem 3). This result is stronger in view of the example of a space

with a Lipschitz Fréchet-smooth bump and no equivalent Gâteaux-smooth norm

constructed in [4]. Thus we obtain a common strenghtening of the result in [14]

and the mentioned results from [10].

We learned by the referee that M. Fosgerau has proved in his Ph.D. Thesis

[3] that if a Banach space admits a Lipschitz Gâteaux-smooth bump function,

then (X∗, weak∗) is fragmentable. Theorem 3 here contains this result as a special

case. The result of Fosgerau has not been published.

As a consequence we can also strengthen a result from [9], namely Corol-

lary 0.5. there, saying that if X is a Banach space, such that its dual X∗ has an

equivalent (not necessarily dual) Gâteaux-smooth norm, then (X,weak) is sigma-

fragmentable by the norm. Here we prove this assertion under (possibly) weaker

assumption of X∗ having Lipschitz Gâteaux-smooth bump instead of equivalent

Gâteaux-smooth norm.

We use a game introduced in [7] and a method used in [10] for proving

our main theorem.

Definition 1. ([6]). The topological space X is called fragmentable by

a metric ρ if for every ε > 0, every subset of X has a nonempty relatively open

subset of ρ−diameter less than ε

Definition 2 ([5]). The Banach space X is called sigma-fragmentable if

for every ε > 0, X can be expressed as X =
⋃

n≥1
Xn such that for every n, every

subset of Xn has a nonempty relatively weakly open subset of norm-diameter less

than ε

In [7] the fragmentability of a space X was characterized by the existence

of a winning strategy for the player Ω in the following (“fragmenting”) game G.

Two players (Σ and Ω) alternatively take non-empty subsets of X. Σ starts the

game by choosing any subset A1 of X and Ω answers by taking a relatively open
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subset B1 ⊂ A1. After that, on the n-th move Σ takes any subset An of the last

move Bn−1 of Ω and the latter answers again by taking a relatively open subset

Bn of the set An just chosen by Σ. Using this way of selection, the players get a

sequence of non-empty sets A1 ⊃ B1 ⊃ A2 ⊃ · · ·An ⊃ Bn ⊃ · · ·, which is called

a play. The player Ω is said to have won the play if the set
⋂

n≥1
An contains at

most one point.

Theorem 1 ([7, Theorem 1.1]). The topological space X is fragmentable

if and only if the player Ω has a winning strategy for the game G.

Theorem 2 ([8, Theorem 1.2]). Let t be some topology, possibly different

from the original topology τ on X. The topological space (X, τ) is fragmentable by

a metric which majorizes the topology t if and only if there exists a strategy for the

player Ω such that
⋂

n≥1
An = Ø or

⋂

n≥1
An = {x} and for every t-neighborhood

U of x, there exists a positive integer k with Bk ⊂ U .

Let X be a real Banach space, and let β be a bornology on X. For

the notions of β-superdifferentiable and β-subdifferentiable extended real-valued

functions, β-smooth function, as well as β-(sub/super)derivative we refer to [10],

[1] or [11]. The β-derivative of a function f at a point x will be denoted by ∇βf(x).

The Gâteaux and Fréchet bornologies are denoted by G and F , respectively.

Definition 3. Let β be a bornology on the space X. The (locally convex)

τβ-topology on the dual space X∗ is given by the zero-neighborhood base {DS,ε :

S ∈ β, ε > 0}, where DS,ε = {x∗ ∈ X∗ : ∀x ∈ S, 〈x∗, x〉 < ε}

In particular, τG is the weak∗ topology and τF is the norm topology (on

X∗).

Proposition 1 ([10]). Let the Banach space X satisfy (Hβ), that is,

let there exist a Lipschitz β-smooth bump function ν : X → [0,+∞). Then X

satisfies also (H ′
β), that is, there exists a Lipschitz β-superdifferentiable function

µ : X → [0, 1] such that µ(0) = 0 and µ(x) = 1 for ‖x‖ ≥ 1.

Definition 4. The continuous function ρ : X → [1,+∞] is called a

β-well function, if it is β-superdifferentiable, ρ(0) < +∞ and ρ(x) = +∞ for

‖x‖ ≥ 1.

Proposition 2 ([10]). Let the Banach space X satisfy (H ′
β) Then there

exists a β-well function on X.
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Proposition 3 ([10]). Let ρ0 be a β-well function on X, µ be the function

from the definition of (H ′
β), µn(x) = µ(nx)/2n, n = 1, 2, . . . and {en}

∞
n=1 ⊂ X.

Then

ρn(x) = ρ0(x) +

n
∑

k=1

µk(x − ek), n = 1, 2, . . . ,

and

ρ∞(x) = ρ0(x) +

∞
∑

k=1

µk(x − ek)

are all β-well functions on X.

Definition 5. Let ρ be a β-well function on X. The gauge function ρ∗

on X∗ is defined for any x∗ ∈ X∗ by

ρ∗(x∗) = sup
e∈X

〈x∗, e〉

ρ(e)

Proposition 4 ([10]). Let ρ∗ be the gauge function from the last defini-

tion. Then there is some ε0 ∈ (0, 1) such that

∀x∗ ∈ X∗, (1 − ε0)‖x
∗‖ ≤ ρ∗(x∗) ≤ ‖x∗‖.

Proposition 5 ([10]). Let ρ be a β-well function on X, e0 ∈ X with

ρ(e0) < +∞ and x∗
0 ∈ X∗ be such that

c := ρ∗(x∗
0) =

〈x∗
0, e0〉

ρ(e0)
> 0

then

(i) ρ is β-differentiable at e0 and x∗
0 = c∇βρ(e0);

(ii) ∀S ∈ β,∀ε > 0,∃δ > 0 such that

Dρ,e0,x∗

0
,δ := {x∗ ∈ X∗ : c − δ <

〈x∗, e0〉

ρ(e0)
≤ ρ∗(x∗) < c + δ}

⊂ x∗
0 + DS,ε.
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Lemma 1. Let the unit ball B∗ of the Banach space (X∗, weak∗) admit

a strategy ω1 for Ω, such that
⋂

n≥1
An = Ø or

⋂

n≥1
An = {x∗} and for every

τβ-neighborhood U of x∗, there exists a positive integer k with Bk ⊂ U . Then the

whole space X∗ also admits such a strategy.

P r o o f. This statement is analogous to Proposition 2.1. from [8], and the

proof follows the same idea.

As the space B∗ admits a strategy ω1 with the mentioned property, the

space nB∗ also does. Denote the latter strategy ωn. Now we construct a strategy

ω for the whole space. Let A1 6= Ø be the first choice of Σ. If A1 \ B∗ 6= Ø,

put ω(A1) = A1 \ B∗ (this is a relatively weak∗ open subset of A1). Otherwise,

if A1 ⊂ B∗, then further follow the strategy ω1. In general, let An be the n-th

move of Σ. If An \ nB∗ 6= Ø, put ω(A1, B1, . . . , An) = An \ nB∗. Otherwise, if

An ⊂ nB∗, then find the least k for which Ak ⊂ kB∗ and follow the strategy ωk.

For every play according to the strategy ω we have one of the following

two alternatives: either (a) Bn = An \ nB∗ 6= Ø for all n ≥ 1 (in this case
⋂

n≥1
Bn ⊂

⋂

n≥1
(X∗ \ nB∗) = Ø), or (b) for some positive integer k we get

Ak ⊂ kB∗ and after that follow the strategy ωk. But then, by the initial remark,
⋂

n≥k An = Ø or
⋂

n≥k An = {x∗} and for every τβ-neighborhood U of x∗, there

exists an integer m ≥ k with Bm ⊂ U . Thus ω has the desired property. �

Theorem 3. Let the Banach space X satisfy (Hβ). Then (X∗, weak∗)

is fragmentable by a metric d, such that the topology it generates is stronger than

the τβ-topology on X∗.

P r o o f. Proof. We s/hall find a winning strategy ω for the player Ω

in the fragmenting game G with the additional property from Theorem 2, i.e.
⋂

n≥1
An = Ø or

⋂

n≥1
An = {x∗} and for every τβ-neighborhood x∗ + DS,ε of

x∗, there exists a positive integer k with Bk ⊂ x∗ + DS,ε. According to the last

Lemma, it suffices to find such a strategy in B∗ rather than in X∗. The frame of

the proof anyway follows the idea from Theorem 1 in [10].

Let A1 ⊂ B∗ be the first move of the player Σ. Put s0 = sup{ρ∗0(x
∗) :

x∗ ∈ A1}. According to Proposition 4, ∃ε0 ∈ (0, 1) such that

∀x∗ ∈ X∗, (1 − ε0)‖x
∗‖ ≤ ρ∗(x∗) ≤ ‖x∗‖.

Therefore s0 < +∞. If s0 = 0 then A1 contains only one point the strategy is

trivial (both the players have no choice in their moves and Ω wins). Let s0 > 0.
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Then there exist x+ ∈ A1 and e1 ∈ X, such that 〈x+, e1〉 > ρ0(e1)(1 − ε0)s0. We

put B1 = {x∗ ∈ A1 : 〈x∗, e1〉 > ρ0(e1)(1 − ε0)s0} ∋ x+. Then B1 = ω(A1) is a

relatively weak∗ open subset of A1.

Now let Σ play some A2 ⊂ B1. Put

D1 = {e ∈ X : sup
x∗∈A2

〈x∗, e〉 ≥ ρ0(e)(1 − ε0)s0}.

We have e1 ∈ D1 because A2 ⊂ B1. As A2 is bounded, x 7→ supx∗∈A2
〈x∗, x〉 is

continuous and therefore D1 is closed. Put ρ1(x) = ρ0(x) + µ1(x− e1), where µ1

is as in Proposition 3. Let s1 = sup{ρ∗1(x
∗) : x∗ ∈ A2}. Then ∀x∗ ∈ A2 ⊂ A1, one

has

(1 − ε0)s0 <
〈x∗, e1〉

ρ0(e1)
=

〈x∗, e1〉

ρ1(e1)
≤ s1 ≤ s0.

Let ε1 ∈ (0, (1 − ε0)
2/22) be such that (1 − ε0)s0 < (1 − ε1)s1. Then ∃x+ ∈

A2,∃e2 ∈ X, such that 〈x+, e2〉 > ρ1(e2)(1 − ε1)s1. Now let Ω play B2 = {x∗ ∈

A2 : 〈x∗, e2〉 > ρ1(e2)(1 − ε1)s1} ∋ x+. Then B2 = ω(A1, B1, A2) is a relatively

weak∗ open subset of A2.

In general, after Σ plays some An+1 ⊂ Bn, put

Dn = {e ∈ X : sup
x∗∈An+1

〈x∗, e〉 ≥ ρn−1(e)(1 − εn−1)sn−1} ⊂ Dn−1.

We have en ∈ Dn because An+1 ⊂ Bn. Like before, Dn is closed. Put ρn(x) =

ρn−1(x)+µn−1(x− en), where µn−1 is as in Proposition 3. Let sn = sup{ρ∗n(x∗) :

x∗ ∈ An+1}. Then for every x∗ ∈ An+1 ⊂ An, one has

(1 − εn−1)sn−1 <
〈x∗, en〉

ρn−1(en)
=

〈x∗, en〉

ρn(en)
≤ sn ≤ sn−1.

Let εn ∈ (0, (1 − ε0)
2/2n+1) be such that (1 − εn−1)sn−1 < (1 − εn)sn. Then

∃x+ ∈ An+1,∃en+1 ∈ X, such that 〈x+, en+1〉 > ρn(en+1)(1 − εn)sn. Now let

Ω play Bn+1 = {x∗ ∈ An+1 : 〈x∗, en+1〉 > ρn(en+1)(1 − εn)sn} ∋ x+. Then

Bn+1 = ω(A1, B1, A2, . . . , An+1) is a relatively weak∗ open subset of An+1.

If xn ∈ Dn+1, then

sup
x∗∈An+2

〈x∗, xn〉

ρn(xn)
≥ (1 − εn)sn > (1 − εn−1)sn−1,
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so

∃x∗
n ∈ An+2 :

〈x∗
n, xn〉

ρn(xn)
> (1 − εn−1)sn−1,

that is,

(1)
〈x∗

n, xn〉

(1 − εn−1)sn−1

> ρn(xn) = ρn−1(xn) + µn(xn − en).

But x∗
n ∈ An+2 ⊂ An+1, so

(2)
〈x∗

n, xn〉

ρn−1(xn)
≤ sn−1, i.e.

〈x∗
n, xn〉

sn−1

≤ ρn−1(xn).

Of course, ‖xn‖ < 1 (otherwise ρn−1(xn) = +∞, which would contradict

(1)). Then

(3) 〈x∗
n, xn〉 ≤ ‖x∗

n‖ ≤
ρ∗0(x

∗
n)

1 − ε0

≤
s0

1 − ε0

.

By (1),(2) and (3) we get

(4) µn(xn − en) ≤
〈x∗

n, xn〉

(1 − εn−1)sn−1

−
〈x∗

n, xn〉

sn−1

=
εn−1〈x

∗
n, xn〉

(1 − εn−1)sn−1

≤
εn−1s0

(1 − εn−1)sn−1(1 − ε0)

But (1 − ε0)s0 < (1 − εn−1)sn−1, so

s0

(1 − εn−1)sn−1

< (1 − ε0)
−1

and from (4) we get

µn(xn − en) <
εn−1

(1 − ε0)2
< 2−n,

so ‖xn − en‖ < n−1 by the definition of µn. Thus the diameters of the (closed)

sets in the nested sequence {Dn} tend to 0, so let
⋂∞

n=1
Dn = {e∞}.

Now let y∗∞ ∈
⋂

n≥1
Bn. As y∗∞ ∈ Bn+1, we have

(5) 〈y∗∞, en+1〉 ≥ ρn(en+1)(1 − εn)sn.
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The sequence {sn} of positive reals is monotonely non-increasing, so let s∞ be

its limit. By Proposition 3,

ρ∞(x) = ρ0(x) +
∞

∑

k=1

µk(x − ek)

is a β-well function on X, and ρn → ρ∞ uniformly on the unit ball of X. Passing

to limit in (5), we get

(6) 〈y∗∞, e∞〉 ≥ ρ∞(e∞)s∞.

But as for every integer n ≥ 1 we have ρ∞ ≥ ρn,

〈y∗∞, e∞〉

ρ∞(e∞)
≤ ρ∗∞(y∗∞) ≤ ρ∗n(y∗∞) ≤ sn.

We let n → ∞ to get
〈y∗∞, e∞〉

ρ∞(e∞)
≤ s∞ and having in mind (6) we conclude that

〈y∗∞, e∞〉

ρ∞(e∞)
= s∞

and ρ∗∞(y∗∞) = s∞. By Proposition 5(i) we get

y∗∞ = s∞.∇βρ∞(e∞), so |
⋂

n≥1

Bn| = 1

Now let δ > 0 be given. There exists an integer N such that for n > N

one has sn < s∞ + δ. Then

(7) ∀y∗ ∈ Bn+1 ⊂ An+1, ρ∗∞(y∗) ≤ ρ∗n(y∗) ≤ sn ≤ s∞ + δ.

By the definition of Bn+1 we have

(8) ∀y∗ ∈ Bn+1,
〈y∗, en+1〉

ρn(en+1)
> (1 − εn)sn.

By ρ∞(e∞) < ∞ we have ‖e∞‖ < 1, so

∣

∣

∣

∣

〈y∗, e∞〉

ρ∞(e∞)
−

〈y∗, en+1〉

ρn(en+1)

∣

∣

∣

∣

≤

∣

∣

∣

∣

〈y∗, e∞〉

ρ∞(e∞)
−

〈y∗, e∞〉

ρn(en+1)

∣

∣

∣

∣

+

∣

∣

∣

∣

〈y∗, e∞〉

ρn(en+1)
−

〈y∗, en+1〉

ρn(en+1)

∣

∣

∣

∣
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≤

∣

∣

∣

∣

〈y∗, e∞〉

(

1

ρ∞(e∞)
−

1

ρn(en+1)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

〈y∗, e∞ − en+1〉

ρn(en+1)

∣

∣

∣

∣

≤ ‖y∗‖.

(
∣

∣

∣

∣

1

ρ∞(e∞)
−

1

ρn(en+1)

∣

∣

∣

∣

+ ‖e∞ − en+1‖

)

≤
s0

1 − ε0

.

(∣

∣

∣

∣

1

ρ∞(e∞)
−

1

ρn(en+1)

∣

∣

∣

∣

+ ‖e∞ − en+1‖

)

n→∞
→ 0.

And by (8) we get (after choosing n large enough) that

(9)
〈y∗, e∞〉

ρ∞(e∞)
≥ s∞ − δ.

By (7), (9) and Proposition 5 (ii) we conclude that for any DS,ε from the τβ-

base Bn+1 ⊂ y∗∞ + DS,ε, for n sufficiently large, provided that δ is chosen in

the manner required in Proposition 5(ii). This fact, Theorem 2 and Lemma 1

show that (X∗, weak∗) is fragmentable by a metric d, such that the topology it

generates is stronger than the τβ-topology on X∗. This finishes the proof. �

In [9] it is shown that if X∗ admits an equivalent (not necessarily dual)

Gâteaux-smooth norm, then X is sigma-fragmentable. Here we get the following

(possibly stronger) result:

Corollary 1. If X∗ has a Lipschitz Gâteaux-smooth bump, then X is

sigma-fragmentable.

P r o o f. The last theorem shows that under the given condition,

(X∗∗, weak∗) is fragmented by a metric, such that the topology it generates is

stronger than the τG-topology, that is, than the weak∗ topology. Taking into

account the canonical embedding of (X,weak) into (X∗∗, weak∗) we conclude

that (X,weak) is fragmented by a metric whose topology is stronger than the

weak topology on X. By Theorem 1.4 from [8] this means that X is sigma-

fragmentable. �

Remark. Of course, the existence of an equivalent Gâteaux-smooth

norm implies the existence of a Lipschitz Gâteaux-smooth bump. In view of a

known example from [4], the hypothesis in the corresponding result from [9] is
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stronger than ours in arbitrary Banach space setting, but we don’t know whether

it’s different for dual Banach spaces.

We now show that indeed Theorem 1 from [10] and its generalisation

Theorem 2 [10] are corollaries of the last theorem. We remind that a map F :

Z → 2Y , where Z,Y are Hausdorff spaces, is called an usco map if it is nonempty

compact valued and upper semicontinuous. Such a map is called a minimal usco

map, if it is minimal with respect to the inclusion of the graphs among all usco

maps with the same domain. When Y = (X∗, w∗) for some Banach space X,

we call F w∗ − usco (correspondingly, minimal w∗ − usco). If F is also convex-

valued, it is called convex w∗ − usco, and such a map which is minimal w.r.t the

inclusion is called a minimal convex w∗ − usco.

We need the following lemma.

Lemma 2 ([13, Proposition 2.5.]). Let F : Z → 2Y be a minimal usco

map on the Baire space Z. Let Y be a Hausdorff space, fragmented by a metric

d. Then there exists a dense Gδ subset D of Z such that F is single-valued and

d-upper semicontinuous at every z ∈ D.

Lemma 3 ([11, Lemma 7.12]). Let T : Z → 2X∗

be a w∗-usco map on

the Hausdorff space Z. For z ∈ Z, define coT (z) to be the weak∗ closed convex

hull of T (z). Then the map coT is convex w∗-usco.

Corollary 2 ([10, Theorem 2]). If X satisfies (Hβ), Z is a Baire space

and F : Z → 2X∗

is a minimal convex w∗-usco map, then F is single-valued and

τβ-upper semicontinuous in all the points of some dense Gδ subset D of Z.

P r o o f. Let T be a minimal w∗-usco map contained in F (for the existence

of such T see [11, Proposition 7.3]). By Theorem 3, X∗ is fragmentable by a

metric d, which generates a topology stronger than the τβ-topology on X∗. By

the Lemma 2, T is single-valued and d-upper semicontinuous in all the points

of some dense Gδ subset D of Z. But as the d-topology is stronger than the

τβ-topology, T is also τβ-upper semicontinuous in the points of D. By Lemma 3,

coT is convex w∗-usco, and the minimality of F implies coT = F . Of course, F is

single-valued in the points of D, and we now see that it is τβ-upper semicontinuous

there. Let W be some τβ-open set containing F (z0) for some z0 ∈ D. Take some

S ∈ β, ε > 0, such that for the basic τβ-open (convex) set

U = DS,ε = {x∗ ∈ X∗ : ∀x ∈ S, 〈x∗, x〉 < ε}
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we have F (z0)+2U ⊂ W . Now T is τβ-upper semicontinuous in z0, so let V ∋ z0

be open neighborhood with T (V ) ⊂ T (z0) + U . Then for every z ∈ V , we have

F (z) = coT (z) ⊂ co(T (z0)+U) ⊂ coT (z0) + U ⊂ coT (z0)+2U = F (z0)+2U ⊂ W.

Thus F is τβ-upper semicontinuous in the points of D. �
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