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ABSTRACT. The basic concepts are M-hyperidentities, where M is a monoid

of hypersubstitutions. The set of all M-solid varieties of semigroups forms
a complete sublattice of the lattice of all varieties of semigroups. We fix
some specific varieties V' of commutative semigroups and study the set of all
M-solid subvarieties of V', in particular, if V' is nilpotent.

1. Introduction. The purpose of this work is to study the lattice L(V') of
all subvarieties of some varieties V' of commutative semigroups and the sublattices
of L(V). Our basic concepts are M-hyperidentities and the stronger concept of
a hyperidentity ([7]). A mapping o from the binary operation symbol f into the
set W(X) is called a hypersubstitution, where W (X) denotes the set of all terms
over a fixed alphabet X. For a term ¢ € W(X) let oy be the hypersubstitution
defined by o4(f) :=t. For a hypersubstitution o we define the extension " of o
as a mapping from W (X) into W (X) inductively:

(i) oNx] := x for z € X
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(i) o™[f(s,t)] == o(f)V X (o"[s],0"[t]), where o(f)VX) denotes the

term operation generated by the term o(f).
Hyp denotes the set of all hypersubstitutions. Clearly, for two hypersubstitutions
o1, 09 the product o1 oy, o9 defined by (o1 op, 02)\[t] := o[y [t]] for t € W(X)
is again a hypersubstitution. Thus Hyp is a monoid under o; and the identity
element o, (see [3]).

Let M be a submonoid of Hyp and let V be a variety of semigroups. An
identity v ~ v in V is called an M-hyperidentity in V if 0"\ [u] &~ o”[v] is an
identity in V for each 0 € M. The variety V is called M-solid if each identity
in V is also an M-hyperidentity in V. By [4] the collection Sjs of all M-solid
varieties of semigroups forms a complete sublattice of the lattice .S of all varieties
of semigroups.

The lattice of all Hyp-solid varieties (or only solid varieties) of semigroups
is studied in [2], [5] and [6]. M-solid varieties for other submonoids M of Hyp
have been studied; see for example [1] and [3]. In this paper we will study lattices
of M-solid varieties of some commutative semigroups for all submonoids M of

Hyp.

2. Basic concepts. We fix a specific variety V' of semigroups. The
collection of all subsets of the lattice L(V') of all subvarieties of V' will be denoted
by P(L(V)). The collection of all subsets of Hyp will be denoted by P(Hyp).

We define a relation Ry C Hyp x L(V) as follows: For o € Hyp and
Y € L(V)set (0,Y) € Ry iff for any identity u ~ v in Y, Y satisfies 0\ [u] ~ o"[v].
Now we define two mappings of, and 3§, on P(Hyp) and P(L(V')), respectively,
as follows:

For M € P(Hyp) set o, (M) = {Y : Y € L(V),(0,Y) € Ry for all
s € M}

for L € P(L(V)) set By, (L) :={o:0 € Hyp,(0,Y) € Ry for all Y € L}.
Obviously, (aj;, 57,) forms a GALOIS-connection.

L(L(V)) denotes the collection of all complete sublattices of L(V'). Further
we define a relation ~y on Hyp as follows: For 01,09 € Hyp we have o1 ~y 09
iff o7\ [zy] & o [zy] is an identity in V. Obviously ~y is an equivalence relation
and [o]y denotes the equivalence class of o € Hyp. For a submonoid M of Hyp
by My we put My := {[o]y : ¢ € M} and for ¢ € Hyp we define [o]y[t] :=
o\[t] for t € W(X). Sy(Hyp) denotes the collection of all My where M is a
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submonoid of Hyp. Now define a map ay (a map (By) on Sy (Hyp) (on L(L(V)))
by ay(My) = aj, (M) (Bv(L) := (B (L))v)-

Clearly, for My € Sy(Hyp), aj,(M) is the collection of all M-solid
subvarieties of V, that means, of, (M) = Sy NL(V). As Sy is a complete
sublattice of S and L(V) is a complete lattice, ay (My) = aj, (M) = Sy NL(V)
forms a complete sublattice of L(V).

Let L € L(L(V)) and V* € L. Then for 01,02 € 3, (L) we have (o1, V*) €
Ry and (09,V*) € Ry. From this it follows if © ~ v an identity in V* then
oh[u] = of[v] is an identity in V* and o7'[04 [u]] & o1'[0%[v]] is an identity in V*.
Thus (o1 o, 02,V*) € Ry. Clearly, (04y,V*) € Ry. Altogether (3, (L) forms a
submonoid of Hyp, that means, By (L) € Sy (Hyp).

We have now mappings ay : Sy (Hyp) — L(L(V)) and By : L(L(V)) —
Sy (Hyp). Since (aj,, ;) forms a GALOIS-connection it is easy to check that
(av, Byv) has the properties of a GALOIS-connection. For M € Sy (Hyp) we put
M:=py (ay(M)) and for L € L(L(V')) we put L := ay (v (L)). An M € Sy (Hyp)
(an L € L(L(V))) is called closed if M = M (L = L).

Now want to use the kernels of ay and Sy (denoted by ker iy and ker Sy,
respectively) to define maps on the closed monoids and on the closed sublat-
tices, respectively. We define a map a,, on Sy (Hyp),keray, by @y ([M]keray) =
[ay (M)]kera, and we define a map ﬁ on L(L(V))/xergy DY ﬁ ([Llker gy) =
[Bv(L)]ker g~ Then a,, and ﬂ are leeCtIOIlS between SV(HYP)/keraV and
L(L(V))/kerpy - Clearly, all members of each ker ay class (ker By class) have
the same closure, so we can label an equational class as [M]yer o, for any M
(as [L]kerpy for any L) in the class. We could also think of a,, (of ﬂ ) as the
restriction of ay (of By ) to the closed members of Sy (Hyp) (of L(L (V)))

In this paper we will now determine the closed members of L(L(V)) for
varieties of specific commutative semigroups, in particular, if V' is nilpotent. Note
that a variety V' of semigroups is called nilpotent if there exists a natural number
k > 2 such that z* ~ z is satisfied by V.

3. Varieties of commutative nilpotent semigroups. In the next by
o we mean [o]y for a variety V.

Theorem 3.1. Let V be a variety of nilpotent commutative semigroups
and M € Sy(Hyp) with M N ({o,: : 1 <ie€N}U{o,:1<ieN})=0. Then
ay(M) ={V': V' € L(V),V' C 9y (M)} where 9y (M) := Mod{z' ~ z : i €
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Iy (M)} and Iy (M) denotes the set of all natural numbers i > 1 such that there
exists a natural number j > 1 with M N {axiyj,oxjyi} £ 0.

Proof. Let V' € ay(M) and i € Iy(M). Clearly, V' € L(V) and
there exists a natural number j > 1 with M N {0,045, } # ©. Suppose that
0giyi € M. Then from zy ~ yx it follows 0., [vy] = 04i,[yx], that means,
2hy) =~ y'o? ~ 2y’ is an identity in V’. Since V is nilpotent, there exists a
natural number k > 2 such that zF ~ z is an identity in V and thus in V.
From this it follows that =2 ~ x and there exists a natural number ¢ with
232 x (22)'zdzt. From x'y’ ~ 27y’ it follows (22)ix’a! ~ (x?)/2’zt. Clearly,
(22)ziat = g2ttt = g2ttt (—1) = g3k=2+0G~9)  Therefore x ~ 3F—2+0=0),
From this is follows x' ~ x3* =37, From 2?72 ~ z it follows 2/ ~ 23F—3+7,
Thus 2" ~ 27 is an identity in V'. From (zy)z ~ z(yz) it follows 0, [(zy)2] =~
0 iyi [T(yz)] where 0,5 [(zy)z] = (2'y’)'2’ and 0, [v(y2)] =~ 2'(y'2?)’. Because
of #' ~ z7 and the commutative law we have (2'yf)'27 ~ 27"y 7' and z(y27 )] ~
xiyigzi2, that means, :z:iyi2zi2 ~ fz:i2yi2zi. By substitution (y — =) we obtain
kfl)

292 ~ 2°2" where a = i% 4+ 42 and b = i + 2. By substitution (z — z
b(k—1) i

we

. Because of 2F ~ 2 we have 2 ~ z*". Thus 2’ ~ 2!
k

obtain 221Dz s 2
is an identity in V. From z* ~ z it follows 0i,i[z] & 0,i,:[2*]. Using ' ~ 27

ki

* and thus z* =~ z is an identity in V.

. b4 )
and o' ~ z' we obtain 0, [z*] ~ z*

k ~ z it follows ¥ 17 ~  and thus 2* ~ 2!7~! that means, 2* ~ 2.

From =
Using 2¥* ~ = we obtain that z* ~ x is an identity in V’. Suppose that Tpiyi € M
then similarly as above we obtain that z* ~ z is an identity in V’. Altogether
V' CMod{az' ~x:i€ Iy(M)} = dy(M).

Conversely let V' € L(V) with V! C ¢y (M). Further let o € M and let
u ~ v be an identity in V'. Because of M N ({0, : 1 <7 € NfU{o, : 1 <
i € N}) = O and the commutative law o € {0,i,; : 1 < 4,5 € N}. Therefore
there are natural numbers 7, j > 1 with 0 = 0y, where 4, j € Iy/(M). Therefore
2 ~ z and 27 ~ x are identities in V’/. From this it follows Ogiyi ™~V Oxy.
By [4] then 0,i,;[t] ~ 0gy[t] for any t € W(X). Therefore o,i,;[u] ~ 04y[u] ~
Ogy[v] & 04y [v], that means, ofu] =~ o[v] is an identity in V'. Thus (o, V') € Ry.
Altogether (¢/,V') € Ry for all ¢/ € M, that means, V' is M-solid and thus
Ve av(M). O

Theorem 3.2. Let V be a variety of nilpotent commutative semigroups
and M € Sy (Hyp) such that M N ({0, : 1 <ie€ NyU{o, :1<ieN})#0O.
Then ay (M) = {T} where T' denotes the trivial variety.
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Proof. Clearly, T € ay (M) and thus {T'} C ay(M).

Conversely, let V' € ay(M). There exists a natural number ¢ > 1 with
M N {oyi,0,} # . From xy ~ yz it follows o,:[zy] ~ 0,i(yz] and o,[zy] ~
oyi[yx], respectively. Thus z* =~ y* is an identity in V. Since V' is nilpotent there
exists a natural number k > 2 such that 2 ~ z is an identity in V and thus
also in V' € ay (M) C L(V). Therefore o,:[z] ~ 0,:[z*] and o,:[2] ~ o,[2F],
respectively, are identities in V’. Using the commutative law from this it follows
that 2’ ~ x is an identity in V’. Consequently, = ~ z' ~ 5’ ~ y. Hence V' is the
trivial variety T'. Altogether ay, (M) C {T}. O

The following examples illustrate Theorem 3.1 and Theorem 3.2. The
varieties Vj, := Mod{(zy)z ~ x(yz), vy ~ yz,z* ~ 2} for k € {2,3,4,5} are used.
Obviously, Vs is the variety SL of all semilattices.

Example 3.3.  Obviously, Hypg;, = {04,0y,0.y} and Ssp(Hyp) =
{My, My, Ms, My} with My = {04,042y}, Mo = {0y,04y}, Mz = {04,0y,04y}
and My = {0y}

By Theorem 3.2 we have agr(M;) = {T'} for i € {1,2,3}.

Because of ¥gr(My) = Mod{z =~ z} and L(SL) = {T,SL} we have
aSL(M4) = {V’ : V/ € L(SL), V/ - 195L(M4)} = {T, SL} by Theorem 3.1.

Example 3.4. We have Hypy, = {04, 0y, 042,02, Ouy, 032y, 0gy2, 052, }-
Let M € Sy, (Hyp).

If M0y, 0y,042,0,2} # O then by Theorem 3.2 we have oy, (M) = {T'}.

If M = {04y} then it is easy to check that oy, (M) = L(V3).

If {00y, 002y Opy2, 0422} 2 M # {04y} then 2 € Iy, (M), that means,
Yy (M) € Mod{x? ~ x}. We have {V' : V' € L(V3),V’ C 9y, (M)} C {V':
V' € L(W3), V' C Mod{z? ~ z}} C {T,SL} because of the commutative law.
Obviously T,SL € {V' : V' € L(V3),V' C ¥y, (M)}. By Theorem 3.1 we have
ay, (M) ={T,SL}.

Example 3.5. We have Hypy, ={04,0y,0,2,0,2,0,3,0,38, 00y, 042y, 052,
szyz,ax:ay,ax:ayz,ox:ay:a,Jx2y3,0xy3}. Let M € Sy,(Hyp).

If M NA{oz,04,042,00,0,3,03} # O then by Theorem 3.2 we have
av, (M) = {T}.

If M = {04y} then it is easy to check that ay, (M) = L(Vy).

If{0$y,0$2y,0$y2,0$2y2,Ugcsy,U$3y2,0$3y3,0$2y3,0$y3} O M # {04y} then
2 € Iy,(M) or 3 € Iy,(M), that means dy,(M) C Mod{z? ~ z} or ¥y, (M) C
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Mod{z?® ~ z}. Suppose that ¥y, (M) C Mod{x? ~ x} then similarly as in Exam-
ple 3.4 we obtain that ay, (M) = {T, SL}. Suppose that 9y, (M) C Mod{xz? ~ x}

3 2

then we note that from 23 ~ z and x* ~ z it follows 22 ~ z (using that from

23 = x it follows 2 ~ z*). Thus also ay, (M) = {T,SL}.

Example 3.6. We have Hypy, = {02,0y, T2, 042, 043,043,044, Oyd, Ogy,
Op2ys Opy2, Op2y2, OpBy, Op3y2, 03303, 03203, Opy3, Opdyy Opdy2, Opdy3, Opdyd, Op3yd, Op204,
U$y4}. Let M € Sy, (Hyp).

If M N {0z,0y,042,0,2,0,3,0,3,0.4,0,4} # O then by Theorem 3.2 we
have ay, (M) = {T'}.

If M = {04y} then it is easy to check that ay; (M) = L(V5s).

M N{0y,0y,042,002,0,3,0,3,0,4,0F = O and M N {04y, 042,042,
T 202, Oy, 0203, Opiy, Opay2, Opys, iy, Ogsyd, Og20a, 0pea } 7 O then 2 € Iy (M)

or 4 € Iy, (M) and we note that from z° 2
4 5

~ z and z* ~ 7 it follows 2% ~ x (using

that from 2* ~ x it follows 2° ~ 22). Similarly as in Example 3.5 we obtain that
ay, (M) =A{T,SL}.

If {048y, 043,3,043} 2 M # {04y} then 3 € Iy (M) and we have {V' :
Ve L(V5), V' COy (M)} C{V': V' € L(V5),V' C Mod{z3 ~ x}} C L(V3). It is
easy to check that L(V3) C {V': V' € L(V;),V’ C ¥y, (M)}. By Theorem 3.1 we
have altogether ayy (M) = L(V3).

4. Other “closed” lattices. In the following we study varieties V' of
commutative semigroups where V satisfies an identity zg...xr = yo...yx for a
natural number k. We will determine all closed sublattices of L(V'). Sy denotes
the collection of all varieties V' of commutative semigroups such that there exists
a natural number k with V satisfies g ...z = yg...yr. Clearly, the variety Z
of all zero-semigroups (Z := Mod{zy =~ zw}) is a member of Sy. The closed
sublattices of L(Z) and L(Z3) where Z3 denotes the variety Z3 := Mod{(zy)z ~
x(yz), vy = yx,ror1T2 =~ Yoy1y2} will be given in two examples shortly. At first
we characterize the lattices oy (M) for any V' € Sy and all M € Sy (Hyp).

Theorem 4.1. Let V € Sy and let M € Sy (Hyp) then oy (M) = {V':
V' € L(V), V' € Modly (M)} if M0 ({og :1<ieN}U{o,:1<ieN}) =
@ and ay(M) = {V' : V' € L(V),V' € Mod(Iy (M) U {zFM) ~ gh(M)+11)1
otherwise where k(M) denotes the least natural number i with M N {0:,0,:} # O
and Iy (M) == {a'y! ~ 29y’ : 1 <i,j € N,ogi, € M} U {miyiniQ ~alyai 1<
1 €N, Ogpiyi € M}
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Proof. Since V € Sy there exists a natural number k& with V' satisfies
To..-Tk X Yo..-Yp- Let V' € ay(M). Obviously then V' € L(V). Suppose
that M N ({0, : 1 <ie€N}U{o, :1<ieN})#@. Then there exists a

least natural number ¢ with o, € M or g, € M. From xy =~ yz it follows

yi
ogilry] = oyilyr] and oyi[zy] = 0, [yx], respectively. Thus x* ~ y* is an identity
i

in V. From ! ~ ¢’ it follows 2' ~ 2! for a natural number ¢ > k. Then

2 ~ 2 From zg...7p ~ yo...yr and t > k it follows 2! ~ z*! and
2t~ ot~ 2!~ 2! that means, 2’ ~ z'T! is an identity in V’. Note
that i = k(M). Let 1 < i,j € N with 0,i,;, € M. From xy ~ yz it follows
O yiyi[2Y] & 04iyi[yx], that means, 'y! ~ z7y" is an identity in V'. Let 1 <i € N
with ¢,i,: € M. From the associative law it follows oi,i[(7y)z] = 0,2 (y2)],
that means, (2'y")'z" ~ x'(y'z")". Using the commutative law we obtain that
2y 2" ~ 2y 2" is an identity in V’. Altogether V/ C ModIy (M) and V' C
Mod(Iy (M) U {aFM) x5 gk(M)+11) " respectively.

Conversely, let V' € L(V) with V' C ModIy (M) and V' C Mod(Iy (M) U
{aFM) 5 gE(M)+1Y) 'yespectively. Further let o € M and let u ~ v be a nontrivial
identity in V’. Because of the commutative law o € {0, : 1 <i € N} U {0 :
1 <ieNyU{og, :1<1i,j€c N} At first we show that if o € {0, : 1 <i €
N}U{o,i : 1 <i € N} then o[u] ~ o[v]. Then there exists a natural number i > 1

with o, = o or g, = 0. With loss of generality we assume that o, = o. Then

Y
we have o,:[u] ~ (up)® and o,i[v] = (vg)® with a,b € {i" : 1 < n € N} where ug
and vy denote the first variable in u and v, respectively. From zF(M) s gk(M)+1

it follows zFM) ~ 2t and 2FM)

y ~ z'y for a natural number ¢ > k. Using
To...Tp X Yo ... Yk we have o¥My x ... xp. Clearly, i > k(M). Thus (ug)® ~
To... 71 ~ (v0). Therefore o,i[u] ~ 0,i[v] is an identity in V'. If 0 = o, then
obviously o[u] ~ o[v] is an identity in V'. If now o € {0, : 1 <14, j € N}\{ogy}
then there are natural numbers m, n and 4,7 > 1 and ug, ..., Um,v0,...,V, € X
with u =ug ... Um, v =209...v, and 0 = 0,;. Thus 2yl ~ 27y’ is an identity
in V'. Now we show that ofu] ~ o[v] is an identity in V'. Here the following

cases are possible:

(a) Suppose that m = n = 0. Obviously then o[u] ~ o[v].

(b) Suppose that m =0 and n > 1 (or n = 0 and m > 1). By substitution
(w — x for w € X) from u ~ v it follows z ~ 2! for a natural number t > 2.

t

From xq...x, ~ yo...y; it follows 2*T2 ~ zF+1 and using « ~ z' we obtain

r~ 22 Then ofu] ®ug...up < vg...v, = ov].
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(c) Suppose that m = n = 1 and {up,u1} = {vp,v1}. Since u ~ v is a
nontrivial identity in V’ it is easy to check that u ~ v is the commutative law,
that means up = v; and u; = vp. From iyl = 2lyt it follows ofu] ~ u%u{ ~
whul = ubul) = viv] ~ o).

(d) Suppose that m = n =1 and {ug,u1} # {vo,v1}. Then there exists

t

a natural number ¢t > 3 such that 22 ~ z! is an identity in V’. From zq ...z ~

Yo ..y, and 22 ~ 2! we obtain z?w ~ zg...x,. Because of o # 0zy We have

2~ mg...2p, we have ofu] ~ uhu] ~ xg... 1) ~

i>2orj > 2. Using 2w ~ wzx
vivl & olu].

(e) Suppose that m = 1 and n > 2 (or n = 1 and m > 2). Then there
exists an identity 22 ~ 2t in V' for a natural number ¢t > 3. Similarly as in case
(d) we obtain that ofu] ~ o[v] is an identity in V.

(f) Suppose that m > 2 and n > 2 and i # j. With out loss of generality
we assume that i < j. At first we show that from z'y’ ~ 279 it follows z(y")7 2 ~
Tg...Tp. We have 2t(y')) ~ xiyly’ with t = (i - j) — j. Using 2'y/ ~ 2iy
we have xiylyt ~ 2iylyt ~ 27(y)y® ~ 2'(y")y® with s = (i -j) — > +i —
j. It is easy to check that from i < j it follows s > 1. Altogether we have
' (y') ~ 2'(y")y* with s > 1. Hence there exists a natural number r > k
with 2% (y*)) ~ z'(y")?y" and 2 (y) 2z ~ 2*(y*)/y"z. Using zg...Tp & Yo ... Ys We
obtain 2%(y*)/z ~ xq ... 7). By the commutative law we obtain o[u] ~ u}(u} ) w,
and ofv] ~ v (vi)w, with wy,w, € W(X). Using 2*(y*)'2 ~ ... 7} we have
olu] ~ ud (ul) w, ~ 0. .. 25 ~ V5 (V) w, ~ ofv].

In the next cases we have ¢ = j and thus miQyiQ P xiyiQ 2 is an identity
in V'

(g) Suppose that m =n = 2 and {ug, u1,u2} = {vo, v1,v2}. Since u = v
is a nontrivial identity in V' we have |{ug, u1,us}| > 2. Without loss of generality
let ug # u1 and ug = vp and u; = vy. By substitution (w — w’ for w € X) from
u = v it follows upuiub ~ vivivl and ué(ifl)ui(ifl)uéuﬁug R~ ué(ifl)uil(i*l)véviv;
and ugufué ~ 1)621)%21)%. By mi2y"2z" ~ xiyi22i2 and the commutative law we
obtain ofu] & uf ui*ul ~ v vi'vh ~ ov).

(h) Suppose that m = n = 2 and {ug,u1,us} # {vo,v1,v2}. Similarly

3

as in case (d) we obtain z°w ~ x¢...x;. From o # oy it follows i > 2 and

i> > 3. Using the commutative law and 23w =~ wz3 =~ zg...x, we obtain
2,42, 0 2,42, 0
olu] = uy ui uh = xg. .. = v V] vy R o[v].

(i) Suppose that m =2 and n > 3 (or m > 3 and n = 2). Similarly as in
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case (e) we obtain that o[u] = o[v] is an identity in V.
(j) Suppose that m > 3 and n > 3. At first we show that from 2% y% 2% ~
;1:"3/"2 2 it follows ;1:"3/"2 2w~ 2. .. 2. We have ;1:"3/"2 PR l‘iyiQZiQZt with ¢t =

i3 t i,

_ ] P R P, P P
i3 —i2. Using 2" y" 2% ~ 2'y" 2" we have 2y’ 2* 2! = 27y 2%2t =~ 2V y" (24)?

A
xiyiQ 225 with s = i3 — 2i2 + 4. Altogether we have xiyi2zi3 R~ xiyiQ 225 with
s > 1 because of 7 > 2. Then there exists a natural number r > k with :1:iyi2 P
xiyigzig’zr and xiyigziSw R~ xiyi2ziszrw. Using xg...zr = yo...Yyr we obtain
xiyig 2w~ xg...xg. Using the commutative law and by fz:i2yi2 P :1:iyi2 2 we
have then ou] & whui ub wy, &~ g . .. x5 ~ vivi vh w, &~ olv], for wy, w, € W(X).
Altogether (0,V’) € Ry. Consequently, (¢/,V’) € Ry for each ¢’ € M, that
means, V' € ay(M). O

We can illustrate Theorem 4.1 by the following two examples.

Example 4.2. Obviously, Hypy = {04,8y,04y} and Sz(Hyp) =
{My, My, M3, My} with My = {04,042y}, Mo = {0y,04y}, Mz = {04,0y,04y}
and My = {0,y }. Then we have ModIz(M4) = Mod{zy ~ zy} and Mod(Iz(M)U
{2 M) gk (M)F1Y) = Mod{z ~ 22} for M € {My, My, M3}. Then by Theorem
4.1 it is easy to check that az(My) = L(Z) = {T,Z} and az(M;) = {T} for
i€{1,2,3}.

Example 4.3. We have Hypy, = {04,0y,0,2,0,2,0,3,04,}. Let M €
Sz, (Hyp). If M N{og,0,} # O then k(M) = 1. It is easy to check that {V':
V' € L(Z3),V' C Mod{z ~ 2?}} = {T}. Thus agz (M) = {T} by Theorem
4.1. If M N{og,0y} = @ and M N {o,2,0,2} # O then k(M) = 2 and we
have az, (M) = {V' : V' € L(Z3),V' C Mod{x? ~ x3}} by Theorem 4.1. If
M N {oz,0y,0,2,00, = O then M = {0y} or M = {03,044} If M = {0}
then by Theorem 4.1 we have oz, (M) = L(Z3). If M = {0,3,04y} then k(M) =3
and by Theorem 4.1 we obtain az, (M) = {V': V' € L(Z3),V’ C Mod{z?® ~ x}}.
Since from oz ~ yoy1y2 it follows z3 ~ z* we have az, (M) = L(Zs).
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