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Abstract. The paper is a contribution to the theory of branching pro-
cesses with discrete time and a general phase space in the sense of [2]. We
characterize the class of regular, i.e. in a sense sufficiently random, branch-
ing processes (Φk)k∈Z by almost sure properties of their realizations with-
out making any assumptions about stationarity or existence of moments.
This enables us to classify the clans of (Φk) into the regular part and the
completely non-regular part. It turns out that the completely non-regular
branching processes are built up from single-line processes, whereas the reg-
ular ones are mixtures of left-tail trivial processes with a Poisson family
structure.

1. Introduction. The notion of a spatial branching process treated here is
a straightforward generalization of the classical Galton-Watson branching model
to the situation where the branching individuals are located in a complete sepa-
rable metric space A. The offspring distribution κ is a stochastic kernel from A
to the (suitably metrisized) set of all configurations of individuals on A, describ-
ing the random daughter population of an individual with given position. We
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consider two-sided infinite Markov sequences of branching populations (Φk) with
offspring distribution κ, so called κ-processes (see [2] for details). This means
we assume the branching population to have an infinite history (entrance law),
which is much weaker than assuming equilibrium, but still leads to important
structural consequences. These are closely connected with the notion of regular-
ity of a κ-process. This notion is introduced in full generality in Section 3: A
κ-process is called regular, if for each bounded Borel set B of the phase space A
the number of individuals in the long-ago population Φ−n with a given positive
a priori chance to have offspring in B (at some given finite time) tends to zero
stochastically as we go to minus infinity.

If (Φk) is of first order (has finite expected number of individuals in
bounded sets), then there is a first order reformulation of the notion of regu-
larity in terms of intensity measures (Theorem 3.7) which coincides with the
definition in [2].

The notion of regularity has two ’historical’ sources. Both of them concern
the special case of a branching dynamics κ without any proper branching, i.e.
where κ is a substochastic shift σ(K) according to a substochastic kernel K in
the phase space (see Section 2).

At the one hand (see e.g. [3]), the regularity of (Φk) ∼ H ensures the
applicability of the Poisson approximation yielding that H is Cox ian, i.e. is a
mixture of distributions of Poissonian σ(K)-processes. At the other hand, Shiga
and Takahashi proved in [10], that a Poissonian σ(K)-process (Φk) is left-tail
trivial (extremal in the set of all distributions of σ(K)-processes) iff it is regular.

Based on [2] and [8] we prove as a final result combining both lines dashed
off above, that a σ(K)-process (Φk) is regular iff almost all of its left-tail trivial
components are Poissonian (Theorem 4.3).

This result is of a greater significance than it might appear at the first
sight: Based on ideas of J. Kerstan, it was pointed out in [2] that an arbitrary
branching dynamics κ becomes a substochastic shift ικ by lifting it to the ”family
level” (with the disadvantage that ικ acts on a significantly more complicated
phase space), cf. Section 2. With this procedure, the κ-process (Φk) ∼ H is
transformed into the corresponding ”family process” (ΦΦk) ∼ GH, and these
family processes are a special class of ικ-processes. It turns out (cf. Proposition
3.2 and 2.3), that (Φk) is regular resp. left-tail trivial iff the family process has
the corresponding property.

The definition of regularity cited above is elementary and makes it easy
to refer to the given literature, but it does not reveal too much of the very nature
of this randomness property. So it is a starting point for deeper investigations.
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Just as in [6] and [8], we have to make use of genealogical relations between
“individuals” appearing in a κ-process (Φk), not only for heuristics but also as
main ingredients in definitions and proofs. We refer in Section 2 to the so-called
refined branching dynamics κo, acting in an extended phase space, where each
individual is not only characterized by its original position but by two additional
“marks” from [0, 1], representing its own and its mother’s name. The names of
the individuals are chosen at random from [0, 1], independently of each other.
This construction makes it possible to read off all genealogical relations almost
surely. There is a unique correspondence between κ-processes (Φk) ∼ H and their
refinements (Φo

k) ∼ Ho which preserves the properties of regularity and left-tail
triviality (cf. Remark 1 and 2.1). Moreover, the introduction of (Φo

k) opens a
simplified approach to the family process, if compared with the way outlined in
[2].

In (Φo
k) almost surely any position of the refined phase space can be

occupied at most once. So almost surely any individual at any time m is uniquely
characterized by its refined position ao

m. Then there exists a.s. the ancestral line
(ao

m, ao
m−1, a

o
m−2, . . .) of that individual. Projection to the original phase space

defines the ancestral line (am, am−1, am−2, . . .) of the corresponding individual in
(Φk).

A main result of this paper (Corollary 6.4) states that a κ-process (Φk) is
regular iff for each bounded Borel subset B of the phase space and a.s. for all an-
cestral lines (am, am−1, am−2, . . .) of an individual in Φm we have the convergence
relation

κ
[n]
(am−n) (χ(B) > 0) −→

n→∞
0.

Here κ
[n]
(a) denotes the probability distribution of the nth daughter generation χ

of an individual at position a. More general, we prove the assertion (Proposition
6.2 and Theorem 6.3) that for an arbitrary κ-process (Φk) ∼ H we have almost

surely weak convergence of κ
[n]
(am−n) along any ancestral line, and the weak limits

can be identified using the left-tail trivial components of H.
If a bounded Borel subset B of the phase space, a time m and a constant

c > 0 are given, we construct a “sieve” for the individuals appearing in a κ-
process (Φk) : An individual at ak from Φk is supposed to pass the sieve iff its
ancestral line (ak−n) fulfils the relation

lim
n→∞

κ
[m−k+n]
(ak−n) (χ(B) > 0) < c.

Obviously, all related individuals from (Φk) pass the sieve if only one of them
passes it (for related individuals the ancestral lines coalesce), i.e. whole “clans”
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in (Φk) pass or do not pass the sieve. The latter form a sub-process (Φk,B,m,c)k∈Z

of (Φk). According to 5.5 such a sub-process comprises almost surely only finitely
many clans. It turns out that the regular part (Φk,reg ) of (Φk) just consists of
those clans passing each sieve of the given structure, whereas the completely non-
regular part (Φk − Φk,reg ) can a.s. be built up from a countable collection of κ-
processes with a.s. finitely many clans. So in a certain sense the κ-processes with
a.s. finitely many clans are complementary to the regular ones. By Theorem 8.1
we give an “elementary” characterization of κ-processes with a.s. finitely many
clans.

The structural results presented in Section 7 give a more or less satis-
factory picture of the nature of κ-processes: Each κ-process can be represented
as mixture of extremal processes, which are independent superpositions of their
corresponding regular and completely non-regular parts. The regular parts are
extremal κ-processes of Poisson type (i.e. the family process is Poissonian),
whereas the completely non-regular parts are independent superpositions of ex-
tremal single-line κ-processes (i.e. representing a single clan migrating randomly
through the family phase space according to the substochastic shift ικ).

We express our gratitude to A. Liemant, whose suggestions and ideas
(stemming already from the eighties) we took up for this paper. We also thank
the referee for valuable hints.

2. Basic notions. We shall use basic notions and notations as introduced
in [2], [6] and only some of them we recall here briefly.

Let (A, ρA) be a complete separable metric space, A the corresponding
Borel σ-field and B the subsystem of bounded Borel sets. (A, ρA) is the phase
space where the branching populations are located. A population is given by a
counting measure Φ on A, i.e. a measure fulfilling Φ(B) ∈ {0, 1, 2, . . .} for B ∈ B.
The number Φ(B) counts those individuals of the population Φ which are located
in B. We denote the empty population by o. The set of all counting measures
on A will be denoted by M, and we write M for the σ-field on M generated by
the mappings Φ ∈ M 7−→ Φ(B), B ∈ B. A random population is described by a
probability distribution P on M.

A branching dynamics on A is defined by a clustering field κ on A, i.e.
a stochastic kernel assigning a distribution κ(a) on M to each a ∈ A. This is
the distribution of the random daughter population of an individual located at a.
So, if Φ =

∑
i∈I

δai
is a population in M, the distribution of the random daughter

population of Φ is defined as convolution κ(Φ) := *
i∈I

κ(ai), i.e. as the distribution

of the superposition of independent daughter populations Ψi of the individuals
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belonging to Φ. Observe that κ(Φ) is well-defined only in the case that for each
B ∈ B we have almost surely

∑

i∈I

Ψi(B) < +∞,

which means that the daughter population of Φ belongs to M a.s. We denote the
set of all Φ ∈ M fulfilling this condition by κM. We have κM ∈ M.

Let P be a probability distribution on M fulfilling P (κM) = 1. We define
the clustered distribution Pκ by

Pκ :=

∫
P (dΦ) κ(Φ),

being the distribution of the daughter population of a random population dis-
tributed according to P .

If κ is a clustering field, we define the clustering powers κ[n], n ≥ 0: For
a ∈ A let by induction

κ
[0]
(a) := δδa

and κ
[n+1]
(a) :=

(
κ

[n]
(a)

)

κ
,

where for each n we have to suppose that κ
[n]
(a) (κM) = 1.

If K is a substochastic kernel on A, the following set-up defines a cluster-
ing field:

σ(K)(a) := (1 − K(a,A))δo +

∫
K(a, da′) δδa′

.

The clustering field σ represents a random shift on A with possible extinction. An
individual at position a will have exactly one descendant in B with probability
K (a,B), whereas with probability 1−K (a,A) it will have no descendant at all.

This paper deals with so-called κ-processes.
A κ-process is a two-sided infinite Markov sequence (Φk)k∈Z

(where Z =
{. . . ,−1, 0, 1, 2, . . .}) with states in M. It is given by a probability distribution H

on the σ-field M⊗Z which fulfils H
(
(κM)Z

)
= 1 and the transition probabilities

of which satisfy the branching law

H (Φk+1 ∈ (·) |Φk) = κ(Φk)

for almost all Φk with respect to the distribution Hk := H (Φk ∈ (·)) , k ∈ Z.
Vice versa, given such a sequence of marginals fulfilling

Hk (κM) = 1 and (Hk)κ = Hk+1, for k ∈ Z,
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then there is a unique κ-process H admitting those marginals.
Let, for any n ∈ Z, Fn denote the sub-σ-field of M⊗Z generated by the

projection (Φk)k∈Z
7−→ (Φk)k≤n. We write F−∞ for the left tail field:

F−∞ :=
⋂

n∈Z

Fn.

A κ-process (Φk)k∈Z
∼ H is said to be left-tail trivial if H|F−∞

takes values in
{0, 1} only.

Investigating κ-processes we consider family relations between individuals
in their realizations. Just as in [6], to do this in a rigorous manner, we introduce
the notion of the refined process Ho connected with the κ-process H with phase
space (A, ρA). This is again a branching process on another (refined) phase space
(Ao, ρAo) with a new branching dynamics κo which are chosen to make it possible
to read off all family relations from the realizations of the κo-process a.s., and
in such a way that the former κ-process can be obtained by a simple projection.
We choose Ao := A × [0, 1] × [0, 1] and

ρAo((a, x, y), (a′, x′, y′)) := ρA(a, a′)+ | x − x′ | + | y − y′ | .

Let M
o be the set of all counting measures on (Ao, ρAo). Consider an individual

in the original process located at a ∈ A. In the refined process it will be located
at position (a, x, y), where the two marks x, y ∈ [0, 1] are the name of its mother x
and its own name y. The individual will transmit its own name y to all individuals
of its daughter generation. So its daughter population Ψo (distributed according
to κo

((a,x,y))) can be written as Ψo =
∑
i∈I

δ(ai,y,zi) where Ψ =
∑
i∈I

δai
is distributed

according to κ(a), and the zi, i ∈ I, are i.i.d. equidistributed on [0, 1] (given
I). It is not hard to understand that this refinement of the original process
indeed reveals all the family relations for almost every realization (Φo

k)k∈Z
. To

any individual at position ak in Φo
k we almost surely can trace back -with a little

help of marks- the ancestral line (ak−n)n≥0, i.e. the locations of its ancestors.
Let us denote any object relating to the refined process by a superscript o.

We may consider M⊗Z as a sub-σ-field of (Mo)⊗Z (with H being the restriction
of Ho to this sub-field) and F−∞ as a sub-σ-field of Fo

−∞

As is well known (cf. e.g. [2], 4.1.1.) a κ-process is extremal (in the sense
that it cannot be represented as a mixture of different κ-processes) iff it is left-tail
trivial, and to each branching dynamics κ there exists a stochastic kernel K from
(MZ,F−∞) to(MZ,M⊗Z) with

(1) For all (Φk) ∈ M
Z, K((Φk), (·)) is the distribution of a left-tail trivial

κ-process.
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(2) For each κ-process (Φk) ∼ H we have H-almost surely

H((·)|F−∞)((Φk)) = K((Φk), (·)).

Given such a stochastic kernel for κ, it is easy to find a version of the
kernel Ko, which is even F−∞-measurable (and not only Fo

−∞-measurable). In
fact, by construction it is obvious that the refinement operation on κ-processes
is one-to-one, surjective and interchanges with the formation of mixtures. So we
immediately get from the identity of left-tail triviality and extremality

2.1 A κ-process (Φk)k∈Z
∼ H is left-tail trivial iff its refinement (Φo

k)k∈Z
∼

Ho has this property.

as well as

2.2 If κ is a clustering field on A and K is a stochastic kernel from
(MZ,F−∞) to (MZ,M⊗Z) fulfilling (1) and (2), then by the set-up Ko((Φo

k), (·)) :=
(K((Φk), (·)))

o we get a corresponding stochastic kernel for the refined clustering
field κo.

The refined process can be used to construct for the κ-process (Φk)k∈Z
∼

H the so-called family process (ΦΦk)k∈Z
∼ GH. We call two individuals from Φk

(more precisely: from Φo
k) related if their ancestral lines coalesce, i.e. if they have

a common ancestor. This means that Φk is composed of (non-empty) families
χk,i ∈ M\{o}, with Φk =

∑
i∈Ik

χk,i. Making use of the fact that A := M\{o},

equipped with a suitable metric ρA (generating the vague topology, see [5], Section
3.3), is in turn a complete separable metric space, we define

ΦΦk :=
∑

i∈Ik

δχk,i

giving a sequence of random counting measures on A. For each m ∈ Z, the
counting measure ΦΦm can be represented as

ΦΦm = ΦΦm

(
(Φo

k)k∈Z

)
,

where ΦΦm (·) is an Fo
m-measurable function defined on (Mo)Z with values in the

set of counting measures on A (with the convention that we assign the zero
measure on A to any sequence (Φo

k)k∈Z
in (Mo)Z which has the property that,

for some m′ ≤ m there exists an individual in Φo
m′ which has not exactly one

ancestor in Φo
m′−1.)

We recall that a subset of A is ρA-bounded iff it is contained in some set
{Φ ∈ A : Φ(B) > 0} with B ∈ B. Hence, if we define sp ΦΦ :=

∑
i∈I

χi for a counting

measure ΦΦ =
∑
i∈I

δχi
on A, we get a counting measure on A.
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Now the dynamics generated by κ on the family level, i.e. on the phase
space A, is defined by the following substochastic kernel on A

K(χ, (·)) =

{
κ(χ) ((·) \{o}) , for χ ∈ κM\o
δo, for χ ∈ A \ κM

.

So the family dynamics is a substochastic shift in A which is described by the new
clustering field ικ = σ(K). The family process (ΦΦk)k∈Z

∼ GH is a ικ-process on
A and we have the projection property H = GH

(
(sp ΦΦk)k∈Z

∈ (·)
)
.

The mapping

(Φo
k)k∈Z

7−→
(
ΦΦm

(
(Φo

k)k∈Z

))
m∈Z

,

which transforms Ho into GH, is measurable with respect to both left-tail fields.
This combined with 2.1 leads to (cf. [2], Proposition 4.1.15)

2.3 A κ-process (Φk) ∼ H is left-tail trivial iff its family process (ΦΦk) ∼
GH has this property.

For a κ-process (Φk)k∈Z
∼ H, the stochastic kernel K yields the (essen-

tially unique) representation of H as a mixture of left-tail trivial components

H =

∫
H(d (Φk))K((Φk), (·)).

This representation can be lifted to the family level.

2.4 The family process (ΦΦk)k∈Z
∼ GH has the representation

GH =

∫
H (d (Φk))GK((Φk),(·))

as mixture of left-tail trivial components.
P r o o f. By 2.3 the probability laws GK((Φk),(·)) are left-tail trivial. We

have by 2.2

Ho =

∫
Ho (d (Φo

k)) (K((Φk), (·)))
o

=

∫
H (d (Φk)) (K((Φk), (·)))

o

Applying the map (Φo
k)k∈Z

7−→
(
ΦΦm

(
(Φo

k)k∈Z

))

m∈Z

yields the desired result. �

Observe that GK((sp ΦΦk),(·)) is not a kernel playing the same universal role
for the clustering field ικ as K does for κ. The point is, not every ικ-process is the
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family process of some κ-process (e.g., for any κ-process (Φk)k∈Z
∼ H fulfilling

Φm(A) > 0 a.s. for each m ∈ Z, the trivial lifting (δΦk
)k∈Z

to the phase space A

is a ικ-process without paying any attention to the family structure of (Φk).)

Given a family χm from a population ΦΦ of the family process (ΦΦk), there
is almost surely an ancestral line (χm−n)n≥0, with χm−n−1 ∈ suppΦΦm−n−1 for
n ≥ 0 comprising all mother individuals of χm−n. (Just as in the case of the
original κ-process (Φk) ∼ H, this has a rigorous meaning if we consider (ΦΦk) as
a measurable function of (Φo

k) .) Since the branching dynamics ικ of the family
process is a substochastic shift, χm may have exactly one or no descendant χm+1

in ΦΦm+1. The counting measure χm+1 comprises all positions of daughters of
individuals from χm. So we get step by step further descendants χm+n of χm

belonging to ΦΦm+n, respectively, where this sequence may break off after a finite
number of steps. The constructed sequence (χk) of families with χk ∈ suppΦΦk,
which is almost surely infinite to the left but possibly terminates to the right,
will be called a clan. For any individual of any family in the clan, the family χk

comprises all individuals of Φk being related to the given individual.

3. Regular κ-processes.

Definition 3.1. A κ-process (Φk) ∼ H is called regular, if for each
m ∈ Z, B ∈ B and ε > 0 we have

lim
n→∞

H
(
Φm−n({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > ε}) > 0

)
= 0.

Regularity means that for each m ∈ Z and B ∈ B the random array with
columns

(Pn,i)i∈Im−n
:=
(
κ

[n]
(am−n,i)

(Ψ(B) ∈ (·))
)

i∈Im−n

,

is ’infinitesimal in probability’. Here we used the representation Φk =
∑

i∈Ik

δak,i
.

According to Theorem 3.4 it will be infinitesimal even almost surely in that case.

If a branching dynamics κ satisfies the global deconcentration property

lim
n→∞

sup
a∈A

κ
[n]
(a)(Ψ(B) > 0) = 0 for each B ∈ B

(cf. [3] and [2], section 4.4), then all κ-processes are regular.

Remark 1. Obviously, the refined κo-process (Φo
k)k∈Z

∼ Ho is regular
iff the original κ-process (Φk)k∈Z

∼ H has this property.
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However, it is not completely obvious that regularity is a property shared
with the family process:

Proposition 3.2. A κ-process (Φk)k∈Z
∼ H is regular iff the corre-

sponding family process (ΦΦk)k∈Z
∼ GH is regular.

Before we prove this, we give some motivation. In fact, at first sight it
seems that regularity of the family process is a stronger property. Taking into
account the concept of boundedness in the phase space A it means that, for any
bounded subset B of A, it becomes more and more unlikely (going backward in
time) to find a family at time m−n which has a good a priori chance to have any
descendants in B at time m. Due to independence of branching, the chance for
the family is something like the sum of the chances for the individuals (belonging
to that family) to put a descendant to B. So why shouldn’t a large or infinite
family have good chances despite of only tiny chances for the individuals? The
explanation lies in the very nature of families: All individuals of the same clan
present at time m in B have a common ancestor, going backward in time far
enough, or they wouldn’t be related. So for large n it should be very unlikely to
find among the finitely many individuals in B at time m any two which are related
without having a common ancestor at time m−n. At the other hand, assume we
have a family at m−n with good chances to put a descendant to B at m. If now
each single individual’s chances were tiny (and independent) to be a B-survivor,
the Poisson law would lead to the conclusion that the probability for at least two
B-survivors should be of the same magnitude as the total B-surviving chance
which was assumed to be pretty good for the family. But two B-survivors would
mean no common ancestor at m − n for the corresponding clan’s B-individuals
(at time m). We give now a rigorous version of these heuristics.

P r o o f. For B ∈ B let B� := {Φ ∈ A : Φ(B) > 0}. As mentioned above,
any ρA-bounded set is contained in a set of this type. Let n > 0 and ΦΦ be a
counting measure on A with spΦΦ ∈ κM\{o}. We have

ικ
[n]
ΦΦ (ΨΨ(B�) > 0) = κ

[n]
(sp ΦΦ)(Ψ(B) > 0).

So the family process is regular iff, for each m ∈ Z, B ∈ B and ε > 0 the relation

lim
n→∞

GH

(
ΦΦm−n({Φ ∈ A : κ

[n]
(Φ)(Ψ(B) > 0) > ε}) > 0

)
= 0

is valid. In this case we surely have

lim
n→∞

GH

(
ΦΦm−n({Φ ∈ A : Φ({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > ε}) > 0}) > 0

)
= 0
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which (by construction of GH) is the same as

lim
n→∞

H
(
Φm−n({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > ε}) > 0

)
= 0

i.e. the regularity of H. So the regularity of GH implies that of H.
To prove the other implication we make use of a technical

Lemma 3.3. Let I be an at most countable set and (ξi)i∈I an in-
dependent family of random elements of {0, 1}. Assume that, for some ε > 0,
0 < η < 1 − e−ε − εe−ε, we have

Prob

(
∑

i∈I

ξi ≥ 1

)
> ε and Prob

(
∑

i∈I

ξi > 1

)
< η.

Then there is some i0 ∈ I with

Prob(ξi0 = 1) > 1 − e−ε − εe−ε − η

and (consequently)

Prob



∑

i6=i0

ξi > 0


 < η(1 − e−ε − εe−ε − η)−1.

P r o o f o f t h e l e m m a. From

Prob(ξi = 1 infinitely often) ≤ Prob

(
∑

i∈I

ξi > 1

)
< η < 1

we obtain with the Borel-Cantelli lemma

λ :=
∑

i∈I

Prob(ξi = 1) < +∞,

and we have

ε < Prob

(
∑

i∈I

ξi ≥ 1

)
= Prob

(
⋃

i∈I

{ξi = 1}

)
≤
∑

i∈I

Prob (ξi = 1) = λ.

In view of λ < +∞ we find some i0 ∈ I with

Prob(ξi0 = 1) = max
i∈I

Prob(ξi = 1),
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and for this i0 the estimate given in the lemma is valid. In fact, for any finite
subset I ′ of I with i0 ∈ I ′ we have, putting

λ′ :=
∑

i∈I′

Prob (ξi = 1)

the estimate (cf. [1], Theorem 2.M)

∣∣∣∣∣∣
Prob



∑

i∈I′

ξi > 1


− (1 − e−λ′

− λ′e−λ′

)

∣∣∣∣∣∣
≤ Prob(ξi0 = 1)

and hence we derive, in view of

Prob



∑

i∈I′

ξi > 1


 ≤ Prob

(
∑

i∈I

ξi > 1

)
< η

the relation

1 − e−λ′

− λ′e−λ′

< Prob(ξi0 = 1) + η.

The set I ′ was an arbitrary finite subset of I containing i0, so we have

1 − e−λ − λe−λ ≤ Prob(ξi0 = 1) + η.

The function 1−e−x−xe−x is strictly increasing for x ≥ 0. This gives the desired
result in view of ε < λ. �

We go on with the proof of Proposition 3.2.

Let (Φk) ∼ H be regular, let m ∈ Z, B ∈ B and ε > 0. Choose some
number η ∈ (0, 1 − e−ε − εe−ε) and put cε,η = 1− e−ε − εe−ε − η. We get by the
preceding lemma

GH

(
ΦΦm−n({Φ ∈ A : κ

[n]
(Φ)(Ψ(B) > 0) > ε}) > 0

)

≤ GH

(
ΦΦm−n

({
Φ ∈ A : Φ({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > cε,η}) > 0

})
> 0

)
+

+GH

(
ΦΦm−n

({
∑
i∈I

δai
∈ A :

⊗
i∈I

κ
[n]
(ai)

(
∑
i∈I

(Ψi(B) ∧ 1) > 1

)
≥ η

})
> 0

)
.

The first term on the right-hand side equals

H
(
Φm−n({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > cε,η}) > 0

)
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which tends to zero as n → ∞ by the regularity of H. As for the second term,
observe that the event E considered there means that there is some family in
ΦΦm−n with a probability at least η that two individuals of that family have
offspring in B at time m. Then we have by the Markov property of the branching
evolution

GH

({
there is some family in ΦΦm−n with two individuals

of that family having offspring in B at time m

})
≥ η ·GH(E)

from which we conclude that the second term GH(E) can be estimated from
above by

(∗) η−1GH

({
there is some family in ΦΦm−n with two individuals

of that family having offspring in B at time m

})
.

Now by the definition of the family process, for any m and any bounded B there
is a finite random time ν(m,B) such that any pair of related individuals in Φm

with location in B has a common ancestor at time m−ν(m,B). So the expression
in (∗) tends to zero as n → ∞ showing that GH is regular. �

The next theorem gives a characterization of regularity in terms of almost
sure properties of realizations.

Theorem 3.4. For any κ-process the following statements are equiva-
lent:
(1) (Φk) is regular.
(2) For all m ∈ Z and B ∈ B we have

sup
a∈supp Φm−n

κ
[n]
(a)(Ψ(B) > 0) −→

n→∞
0

in probability.
(3) For all m ∈ Z and B ∈ B we have almost surely

lim
n→∞

sup
a∈supp Φm−n

κ
[n]
(a)(Ψ(B) > 0) = 0.

(4) For all m ∈ Z and B ∈ B we have almost surely for each clan (χk) in (ΦΦk)

lim
n→∞

κ
[n]
(χm−n)(Ψ(B) > 0) = 0.

(5) For all m ∈ Z and B ∈ B we have almost surely for each clan (χk) in (ΦΦk)

lim
n→∞

κ
[n]
(χm−n)(Ψ(B) > 0) = 0.
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We are going to show in Section 6 that in (5) clans may be replaced by
ancestral lines of individuals.

Observe that in (4) and (5) the expression under the limit operator makes
sense for n being large enough.

The proof of Theorem 3.4 is based on the following

Lemma 3.5. Let (Φk) ∼ H be a σ(K)-process given by a substochastic
kernel K. Then for all m ∈ Z and B ∈ B the sequence

sup
a∈supp Φm−n

σ(K)
[n]
(a)(Ψ(B) > 0), n = 1, 2, . . .

converges H-almost surely.

P r o o f. For abbreviation we put

sn(Φ, B) := sup
a∈supp Φ

σ(K)
[n]
(a)(Ψ(B) > 0), n = 0, 1, 2, . . . .

Obviously the quantities sn(Φm−n, B), n ≥ 1, are integrable with respect to H.
We have, putting Φm−n−1 =

∑
i∈I

δai
,

E [sn(Φm−n, B) |Fm−n−1 ]

= E [sn(Φm−n, B) |Φm−n−1 ]

=

∫
σ(K)(Φm−n−1)(dχ) sup

a∈supp χ
σ(K)

[n]
(a)(Ψ(B) > 0)

≥ sup
j∈I

∫
K(aj , da)K [n](a,B)

= sup
j∈I

K [n+1](aj , B)

= sup
a∈supp Φm−n−1

σ(K)
[n+1]
(a) (Ψ(B) > 0)

= sn+1(Φm−n−1, B).

So the sequence sn(Φm−n, B), n = 1, 2, . . ., is a reverse sub-martingale with
respect to (Fm−n)n≥1. Hence it converges almost surely (cf. for instance [9]). �
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P r o o f o f Th e o r e m 3.4.

1. Obviously (4) is a consequence of (5), (2) is a consequence of (3), and
(2) is equivalent to (1).

2. We show that (3) and (5) are consequences of (1). If (1) is fulfilled, then
by Proposition 3.2 the corresponding family process (ΦΦk)k∈Z

∼ GH is regular,
too. Hence the sequence

(3.1) sup
χ∈supp ΦΦm−n

κ
[n]
(χ)(Ψ(B) > 0), n = 1, 2, . . .

tends to zero in probability. On the family level the branching dynamics is a
substochastic shift. Hence Lemma 3.5 yields the almost sure convergence of this
sequence to zero. This implies (5) and (3).

3. Finally, we have to show that (4) implies (1). In fact, assume that
(Φk) is not regular. Consequently, there is a number m ∈ Z, a set B ∈ B and
some ε > 0 such that with a positive probability δ there exists a random sequence
0 < ν1 < ν2 < . . . and a sequence of clans (χ1

k), (χ
2
k), . . . with

(3.2) κ
[νi]

(χi
m−νi

)
(Ψ(B) > 0) > ε, i = 1, 2, . . . ,

since otherwise the sequence (3.1) would tend to zero almost surely implying
regularity of both the family and the basic process.

We will prove that, for an arbitrary κ-process, a sequence of clans fulfilling
(3.2) consists almost surely of only finitely many different clans.

In fact, assume the opposite. Then without any loss of the generality we
may even assume that this sequence does not contain any clan more than once.
Therefore, for an arbitrary integer M > 0, we find a natural number N with the
following property: With probability at least δ/2 we have

ΦΦm−N ({χm−N ∈ A : there is some 0<n<N with κ
[n]
(χm−n)(Ψ(B)>0) > ε})>M.

Now, given ΦΦm−N =
∑

i∈Im−N

δχi
m−N

, in view of the definition of the family process

to each i ∈ Im−N we may assign measurably a triple [ςi, ni, wi] where we put

[ςi, ni]

=





[χi
m−ni , n

i], ni being the largest integer ≤ N with κ
[ni]

(χi

m−ni
)
(Ψ(B) > 0) > ε

[o, 0], if there is no such integer
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and wi = 1 if χi
m(B) > 0 and wi = 0 else. Since the evolution of families,

given ΦΦm−N , is independent and Markov, we find that the collection of triples
{[ςi, ni, wi]}i∈Im−N

is independent and we have for each l in {1, 2, . . . , N − 1}

Prob(wi = 1|ςi 6= o, ni = l) > ε.

(Observe that m−ni is a Markov time for the Markov sequence (χi
m−N+k)0<k<N ).

Hence we have

H(Φm(B) > Mε) ≥ Prob(
∑

i∈Im−N

wi > Mε) ≥

Prob(there are at least M of the ςi 6= o)×

×Prob(
∑

i∈Im−N

wi > Mε | there are at least M of the ςi 6= o).

By assumption, the first factor is at least δ/2, whereas for the second factor we
get

Prob




∑

i∈Im−N

wi > Mε | there are at least M of the ςi 6= o



 ≥
∑

k>Mε

B(k,M, ε)

where B(k,M, ε) is the probability of k successes in a Binomial distribution with
M trials and success probability ε. This tends to 1/2 for M tending to infinity
by the Moivre-Laplace theorem in contradiction to the fact that Φm(B) is a.s.
finite.

Assume now (4) to be fulfilled. By the preceding consideration we may
conclude that there exists with a positive probability δ an a.s. finite collection of
clans (χ1

k), (χ
2
k), . . . , (χL

k ) such that for each of them we have

(3.3) lim
n→∞

κ
[n]

(χj
m−n)

(Ψ(B) > 0) = 0

as well as

(3.4) lim
n→∞

κ
[n]

(χj
m−n)

(Ψ(B) > 0) > ε.

This is easily seen to be impossible. In fact, condition on this event (having
a probability of at least δ) and pick up one of these clans by chance. This
gives a family process which comprises almost surely one clan (χk), and this
clan fulfils (3.3) and (3.4). On the one hand, from (3.4) it is obvious that the
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event χm(B) > 0 has a probability of at least ε: Simply go back in time far
enough to some time m−N , trace the evolution and wait until, for some ν < N ,

κ
[n]
(χm−ν )(Ψ(B) > 0) > ε. If N is large enough, this will happen with a probability

arbitrarily close to one. This ν being again a Markov time, you find the total
chance for the clan to have a descendant in B at time m to be greater than ε.
But on the other hand with that very argument you conclude from (3.3), that
for the picked up clan the chances are zero to visit B at m: For an arbitrarily
small ε′ > 0 you find some N such that, tracing the evolution since m−N with a
probability arbitrarily close to one you find some (Markov) time ν < N , fulfilling

κ
[n]
(χm−ν )(Ψ(B) > 0) < ε′, leading to the conclusion that the total probability for

the clan to have individuals in B at time m is arbitrarily small. �

As an immediate consequence of the preceding theorem we get

3.6 A κ-process (Φk) ∼ H is regular iff for H-almost all (Φk) the left-tail
trivial component K((Φk), (·)) has this property.

A κ-process (Φk) ∼ H is said to be of first order, if all intensity measures
ΛHm of Hm, m ∈ Z,

ΛHm
(C) :=

∫
Hm(dΦ)Φ(C), C ∈ A,

are measures which are finite on bounded Borel sets, i.e. ΛHm
(C) < +∞ for

C ∈ B.
Obviously, (Φk) ∼ H is of first order iff the refined process (Φo

k) ∼ Ho has
this property. In this case, the family process (ΦΦk)k∈Z

∼ GH is obviously of first
order, too. (The converse is not generally true, in the case of the family process
being of first order the original process may not be of first order.)

The intensity kernel J of the clustering field κ is defined as the family of
intensity measures determined by κ,

J(a,C) :=

∫
κ(a)(dΨ)Ψ(C), a ∈ A, C ∈ A,

and we have for the n-th convolution power of J

J [n](a,C) =

∫
κ

[n]
(a)(dΨ)Ψ(C)

as well as ΛHm
∗ J = ΛHm+1 , m ∈ Z.

In [2] the notion of regularity was defined for κ-processes of first order
by means of intensity measures and the intensity kernel. It turns out that this
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concept, being based on first order characteristics only, is compatible with the
notion of regularity introduced here for arbitrary κ-processes.

Theorem 3.7. For a κ-process of first order the following statements
are equivalent:
(1) (Φk) is regular.
(2) For any m ∈ Z, B ∈ B and ε > 0 we have

lim
n→∞

ΛHm−n
({a ∈ A : J [n](a,B) > ε}) = 0.

(3) For any m ∈ Z and B ∈ B we have

lim
n→∞

sup
a∈supp Φm−n

J [n](a,B) = 0

H-almost surely.
(4) For any m ∈ Z and B ∈ B we have

lim
n→∞

sup
χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B) = 0

GH-almost surely.

The proof shows that the theorem remains valid if we replace the almost
sure convergences in (3) and (4) by convergences in probability.

P r o o f o f Th e o r e m 3.7.
1. Clearly (3) is a consequence of (4).
2. We are going to show that (3) implies (2). Let m ∈ Z and B ∈ B.

Obviously from (3) we conclude

lim
n→∞

H(Φm−n({a ∈ A : J [n](a,B) > ε}) > 0) = 0

for each ε > 0. Let x > 0. We get for any ε > 0 and n ≥ 1

ΛHm−n
({a ∈ A : J [n](a,B) > ε})

=

∫
H(d(Φk))Φm−n({a ∈ A : J [n](a,B) > ε})

=

∫
H(d(Φk))Φm−n(. . .)1(0,x)(Φm−n(. . .))

+

∫
H(d(Φk))Φm−n(. . .)1[x,∞)(Φm−n(. . .)).
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The first term in this sum can be estimated from above by

x · H(Φm−n({a ∈ A : J [n](a,B) > ε}) > 0)

which tends to zero as n → ∞ for each x. The second term is not greater than

∫
H(d(Φk))

1

ε

∫
Φm−n(da)J [n](a,B)1[x,∞)

(
1

ε

∫
Φm−n(da)J [n](a,B)

)

=
1

ε

∫
H(d(Φk))

(∫
Φm−n(da)

∫
κ

[n]
(a)(dΨ)Ψ(B)

)
·

·1[εx,∞)

(∫
Φm−n(da)

∫
κ

[n]
(a)(dΨ)Ψ(B)

)

=
1

ε

∫
H(d(Φk))E(Φm(B)|Fm−n)1[εx,∞)(E(Φm(B)|Fm−n)).

This tends to

1

ε

∫
H(d(Φk))E(Φm(B)|F−∞)1[εx,∞)(E(Φm(B)|F−∞))

as n → ∞. Hence the last integral becomes arbitrarily small for large x. This
proves

lim
n→∞

ΛHm−n
({a ∈ A : J [n](a,B) > ε}) = 0.

i.e. (2).
3. We have

H
(
Φm−n({a ∈ A : κ

[n]
(a)(Ψ(B) > 0) > ε}) > 0

)

≤ H

(
Φm−n({a ∈ A :

∫
κ

[n]
(a)(dΨ)Ψ(B) > ε}) > 0

)

≤
∫

H(d(Φk))Φm−n({a ∈ A :

∫
κ

[n]
(a)(dΨ)Ψ(B) > ε})

= ΛHm−n
({a ∈ A : J [n](a,B) > ε}),

hence (1) is a consequence of (2).
4. Finally, we prove that (4) is a consequence of (1).
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In view of
∫

χ(da)J [n](a,B) =

∫
χ(da)

∫
κ

[n]
(a)(dΨ)Ψ(B) =

∫
κ

[n]
(χ)(dΨ)Ψ(B)

we get for y > 0

GH

(
ΦΦm−n({χ ∈ A :

∫
χ(da)J [n](a,B) > ε}) > 0

)

≤ GH

(
ΦΦm−n({χ ∈ A :

∫
κ

[n]
(χ)(dΨ)Ψ(B)1(0,y)(Ψ(B)) >

ε

2
}) > 0

)

+GH

(
ΦΦm−n({χ ∈ A :

∫
κ

[n]
(χ)(dΨ)Ψ(B)1[y,∞)(Ψ(B)) >

ε

2
}) > 0

)

≤ GH

(
ΦΦm−n({χ ∈ A : κ

[n]
(χ)(Ψ(B) > 0) >

ε

2y
}) > 0

)

+

∫
GH(d(ΦΦk))ΦΦm−n

(
{χ ∈ A :

∫
κ

[n]
(χ)(dΨ)Ψ(B)1[y,∞)(Ψ(B)) >

ε

2
}

)
.

The first one of the two terms in the last expression tends to zero as n → ∞ for
each y > 0, for Proposition 3.2 says that (ΦΦk) ∼ GH is regular iff (Φk) ∼ H is
so. The second term can be estimated from above by

2

ε

∫
GH(d(ΦΦk))

∫
ΦΦm−n(dχ)

∫
κ

[n]
(χ)(dΨ)Ψ(B)1[y,∞)(Ψ(B))

=
2

ε

∫
GH(d(ΦΦk))

∑

i∈I

∫
κ

[n]
(χi)

(dΨ)Ψ(B)1[y,∞)(Ψ(B))

(using ΦΦm−n =
∑
i∈I

δχi
)

=
2

ε

∫
GH(d(ΦΦk))

∑

i∈I

∫ 


⊗

j∈I

κ
[n]
(χj)

(d(Ψj)j∈I)



Ψi(B)1[y,∞)(Ψi(B))

≤
2

ε

∫
GH(d(ΦΦk))

∫ 

⊗

j∈I

κ
[n]
(χj)

(d(Ψj)j∈I)



(
∑

i∈I

Ψi(B)

)
1[y,∞)

(
∑

i∈I

Ψi(B)

)
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=
2

ε

∫
GH(d(ΦΦk))

∫
κ

[n]
(sp ΦΦm−n)(dΨ)Ψ(B)1[y,∞)(Ψ(B))

=
2

ε

∫
H(d(Φk))

∫
κ

[n]
(Φm−n)(dΨ)Ψ(B)1[y,∞)(Ψ(B))

=
2

ε

∫
H(d(Φk))Φm(B)1[y,∞)(Φm(B)),

and this integral tends to zero as y tends to infinity, since Φm(B) is integrable
with respect to H.

So from (1) we infer that for any m ∈ Z, B ∈ B and ε > 0 we have

lim
n→∞

GH

(
ΦΦm−n({χ ∈ A :

∫
χ(da)J [n](a,B) > ε}) > 0

)
= 0.

Hence

sup
χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B)

tends to zero in probability as n → ∞.
In order to show that this convergence is even GH-almost sure it is enough

to prove that the sequence sup
χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B), n = 1, 2, 3, . . ., is a

reverse sub-martingale with respect to the filtration (Gn)n≥1 defined by Gn :=
σ({ΦΦm−k}k≥n), since this would imply that the sequence converges GH-almost
surely (cf. [9]).

In fact, we have for n ≥ 1

sup
χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B) ≤

∫
ΦΦm−n(dχ)

∫
χ(da)J [n](a,B)

=

∫
spΦΦm−n(da)J [n](a,B)

and consequently
∫

GH(d(ΦΦk)) sup
χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B) ≤

∫
Λm−n(da)J [n](a,B) = Λm(B)

meaning that the members of the sequence are integrable with respect to GH.
Putting again ΦΦm−(n+1) =

∑
i∈I

δχi
, we find

E

[
sup

χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B)

∣∣∣∣∣Gn+1

]
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= E

[
sup

χ∈supp ΦΦm−n

∫
χ(da)J [n](a,B)

∣∣∣∣∣ΦΦm−(n+1)

]

=

∫
ικ(ΦΦm−(n+1))(dΨΨ) sup

χ∈supp ΨΨ

∫
χ(da)J [n](a,B)

=

∫ (⊗

i∈I

κ(χi)(d(Ψi)i∈I)

)
sup
j∈I

∫
Ψj(da)J [n](a,B)

≥ sup
j∈I

∫
κ(χj)(dΨj)

∫
Ψj(da)J [n](a,B)

= sup
j∈I

∫
χj(daj)

∫
κ(ai)(dΨj)

∫
Ψj(da)J [n](a,B)

= sup
j∈I

∫
χj(da)J [n+1](a,B)

= sup
χ∈supp ΦΦm−(n+1)

∫
χ(da)J [n+1](a,B),

which concludes the proof. �

4. The special case of substochastic shifts and the family process.

If one is trying to reveal the general structure of κ-processes, it is quite useful
to consider the corresponding family process, since, as it was pointed out above,
on the family level the dynamics is a substochastic shift and hence particularly
simple. (On the other hand, the phase space is more complicated.)

If the branching dynamics is a substochastic shift, the σ(K)-process (Φk) ∼
H is a collection of (possibly terminating) migrations in A, which are condi-
tionally independent of each other in the future, given the population Φk0 at a
starting time k0. So, somewhat slackly spoken, knowing the remote past of the
process, the further evolution is described by an at most countable collection of
independent individuals migrating in A. Considering a bounded region B, each
individual has some chance to visit B at a given time m. Due to independence,
the actual number Φm(B) has good chances to be of the order of the expected
number (given the remote past), which in particular implies that this expected
number must be finite. If in addition we assume that the process is regular, then
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the Poisson law should imply that, given the remote past, Φm(B) has a Poisson
distribution. This is the heuristic argument for the following three assertions.

Proposition 4.1. Each left-tail trivial σ(K)-process (Φk) ∼ H is of
first order.

P r o o f. Let B ∈ B and m ∈ Z. Then (Φm−k ∗ K [k])(B) is almost surely

finite for each k ≥ 0, since otherwise by the Borel-Cantelli lemma σ(K)
[k]
(Φm−k)

would not exist a.s. For almost all Φm−k with

(Φm−k ∗ K [k])(B) − 2
√

(Φm−k ∗ K [k])(B) ≥ L > 0

we have now (taking into account that, given Φm−k, the quantity Φm(B) is a
number of Bernoulli successes)

H (Φm(B) ≥ L|Φm−k)

≥ H

(
Φm(B) ≥ (Φm−k ∗ K [k])(B) − 2

√
(Φm−k ∗ K [k])(B)

∣∣∣∣Φm−k

)

≥ 1 − H

(
|Φm(B) − (Φm−k ∗ K [k])(B)| > 2

√
(Φm−k ∗ K [k])(B)

∣∣∣∣Φm−k

)

≥ 1 − H

(
|Φm(B) − E(Φm(B)|Φm−k)| ≥ 2

√
Var(Φm(B)|Φm−k)

∣∣∣∣Φm−k

)

≥ 1 − 1/4 = 3/4,

which implies that

H (Φm(B) ≥ L) ≥ 3/4 · H

(
(Φm−k ∗ K [k])(B) − 2

√
(Φm−k ∗ K [k])(B) ≥ L

)
.

Now (see [8], proof of Proposition 16.1) the left-tail triviality of H implies almost
surely for each bounded B

(Φm−k ∗ K [k])(B) −→
k→∞

EΦm(B),

where the right-hand side need not necessarily be finite. If it would be infinite,
however, we would get H (Φm(B) ≥ L) ≥ 3/4 which is a contradiction, since L
was arbitrary. �

From 2.3 and the preceding result we deduce
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Corollary 4.2. The family process (ΦΦk) ∼ GH of a left-tail trivial
κ-process (Φk) ∼ H is of first order.

Now consider an arbitrary σ(K)-process (Φk) ∼ H. By 3.6 it is regular
iff its left-tail trivial components (being first order processes by the preceding
proposition) are almost surely regular. Consider the corresponding sequences of
intensity measures {ΛH(Φm|F−∞)((Φk))}m∈Z. In [2] the probability distribution of

this random measure-valued sequence is denoted by WH. Regularity of H is by
Theorem 3.7 equivalent to the fact that WH-a.s. condition (2) of this theorem
is fulfilled. By Theorem 4.4.5. of [2] this means that, in the terminology of
section 4.5 in [2], WH is regular. (i.e. the notions of regularity are compatible).
Moreover, in [2] the notion of a κ-process of Poisson type with a given intensity
sequence (νk)k∈Z was defined as weak limit, for m → ∞, of κ-Markov processes
starting at time m with a Poisson population with intensity measure νm (provided
this limit process has (νk) as its intensity sequence, see [2], section 3.3). Now
observe that in the case of a σ(K)-dynamics the Poisson character of the initial
population is conserved forever; hence the process of ”Poisson type” with given
intensity sequence is nothing but the corresponding Poissonian σ(K)-process.
Hence [2], Theorem 4.5.3 immediately yields

Theorem 4.3. A σ(K)-process (Φk) ∼ H is regular iff almost all
left-tail trivial components are Poisson processes.

From the contemporary point of view it is reasonable to extend the defi-
nitions of κ-processes of Poisson type (resp. of Cox type, see [2], sections 3.2 and
3.3) to the case of processes not being of first order. In [11] one of us presented
an example of a subcritical spatially homogeneous branching process admitting
an equilibrium, which is (necessarily) not of first order, but of Poisson type in
the sense of

Definition 4.4. A κ-process (Φk) ∼ H is said to be of Poisson type, if
the corresponding family process (ΦΦ ∼ GH is Poissonian (i.e. all marginals are
Poisson point fields).

The preceding theorem in combination with Proposition 3.2 leads to the
conclusion

Corollary 4.5. A κ-process is regular iff it is a mixture of left-tail
trivial processes of Poisson type.

Let us recall the notion of a Coxian σ(K)-process.
Let N denote the set of those measures on A having finite values on

bounded sets. The σ-field on N generated by all mappings ν ∈ N 7−→ ν(B),
B ∈ B, will be denoted by N .
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For ν ∈ N and a substochastic kernel K on A the convolution

ν ∗ K :=

∫
ν(da)K(a, (·))

is a measure on A (not necessarily belonging to N ). A probability distribution Q

on N⊗Z represents a random sequence (νk)k∈Z of measures in N. Let, for k ∈ Z,
Qk := Q(νk ∈ (·)) be the marginals of Q. If we have, for a substochastic kernel
K on A

νk ∗ K = νk+1, Q-almost surely for each k ∈ Z,

then the sequence of probability distributions

I(Qm) :=

∫
Q(d(νk)k∈Z)Πνm =

∫
Qm(dν)Πν , m ∈ Z,

obviously fulfils the relation

(I(Qm))σ(K) = I(Qm+1),

so there is a unique σ(K)-process with I(Qm), m ∈ Z, as its marginals. It is
called Coxian and its probability law is denoted by I(Q).

The following assertion has been known for long under stronger assump-
tions (cf. e.g. Theorem 4.6 in [3]). It is now a simple consequence of Theorem
4.3.

Corollary 4.6. Each regular σ(K)-process is Coxian.

Definition 4.7. A κ-process (Φk) ∼ H is said to be of Cox type, if the
corresponding family process (ΦΦk) ∼ GH is Coxian.

This yields

Corollary 4.8. Each regular κ-process is of Cox type.

5. κ-processes with finitely many clans. For a κ-process (Φk) ∼ H

consider the family process (ΦΦk) ∼ GH and put

r((ΦΦk)) := sup
n∈Z

ΦΦn(A).

Definition 5.1. We say a κ-process (Φk) ∼ H has finitely many clans
if the condition r((ΦΦk)) < +∞ is fulfilled almost surely.
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Stationary processes of that kind have been investigated in [6]. In that
case it is sufficient to assume that at each time there are almost surely only
finitely many families, i.e.

GH(ΦΦm(A) < ∞) = 1, m ∈ Z.

In the general case this may be fulfilled with the κ-process not having finitely
many clans in the sense defined above.

Example 5.2. Let A = {1} and define κ = σ(K) with K(1, {1}) = c
for some c ∈ (0, 1). Then (Πνn)n∈Z

, with νn({1}) = cn is an entrance law for κ.
For the corresponding κ-process each family comprises exactly one individual. So
ΦΦm(A) has a Poisson distribution with parameter cm meaning that each ΦΦm(A)
is a.s. finite for each m, but sup

m∈Z

ΦΦm(A) = +∞ almost surely. Moreover we have

κ
[n]
(1)(Ψ({1}) > 0) = cn −→

n→∞
0, i.e. the κ-process is regular.

Regularity and having finitely many clans are incompatible properties for
κ-processes:

Proposition 5.3. If a κ-process (Φk) ∼ H is regular and has finitely
many clans then it is almost surely empty, i.e.

H(Φm(A) = 0) = 1, m ∈ Z.

P r o o f. Let m ∈ Z and B ∈ B. Then we have for all n ≥ 0 and x > 0

H (Φm(B) > 0)

=

∫
H(d(Φk))κ

[n]
(Φm−n)(Ψ(B) > 0)

=

∫
GH(d(ΦΦk))κ

[n]
(sp ΦΦm−n)(Ψ(B) > 0)

=

∫
GH(d(ΦΦk))κ

[n]
(sp ΦΦm−n)(Ψ(B) > 0)(1[0,x)(r((ΦΦk))) + 1[x,∞)(r((ΦΦk))))

≤
∫

GH(d(ΦΦk))

∫
ΦΦm−n(dχ)κ

[n]
(χ)(Ψ(B)>0)1[0,x)(r((ΦΦk)))+GH(r((ΦΦk))≥x)

≤ x ·
∫

GH(d(ΦΦk)) sup
χ∈supp ΦΦm−n

κ
[n]
(χ)(Ψ(B) > 0) + GH(r((ΦΦk)) ≥ x).



On the structure of spatial branching processes 295

If (Φk) is regular, then by Theorem 3.4 the integral term of the last row tends to
zero as n → ∞, and if (Φk) has finitely many clans, then the second term tends
to zero as x → ∞. So (Φk) is a.s. empty. �

For the subsequent considerations we introduce the notion of a

sub-process. A κ-process (Φ
(1)
k )k∈Z ∼ H(1) will be called sub-process of

another κ-process (Φ
(2)
k )k∈Z ∼ H(2), if there exists a random coupled

sequence ((Ψ
(1)
k ,Ψ

(2)
k ))k∈Z of elements of M × M with the properties

Prob((Ψ
(i)
k )k∈Z ∈ (·)) = H(i), i = 1, 2

and
Prob(Ψ(1)

m ≤ Ψ(2)
m ) = 1, m ∈ Z.

Remark 2. In the following we will consider sub-processes (Φ
(1)
k ) of

a κ-process (Φk) ∼ H which are defined by selecting whole clans according to
whether they fulfil a given Fo

−∞-property. In this case the complementary pop-

ulation sequence (Φk − Φ
(1)
k ) forms a sub-process, too, because it is defined by

selecting clans according to the complementary Fo
−∞-property. In the general sit-

uation it may happen that the complementary population is not a κ-process and
consequently not a sub-process by definition. This is illustrated by the following

Example 5.4. Let A = {1, 2, 3} and consider the σ(K)-process (Φk)
which is uniquely defined by the stochastic kernel

K(i, (·)) =

{
δ1 for i = 1
1/2 · δ2 + 1/2 · δ3 for i = 2, 3

and by the property that Φk({1} = Φk({2, 3}) = 1 for all k ∈ Z. It describes a
population of two individuals, with the one at position 1 staying there forever and
the other one migrating randomly between the locations 2 and 3. Now consider

a random sub-population (Φ
(1)
k ) of (Φk) defined as follows: If Φ0({3}) = 1 we

put Φ
(1)
k = δ1, k ∈ Z, whereas for the case Φ0({3}) = 0 we put Φ

(1)
k = o, k ∈ Z.

It is obvious that (Φ
(1)
k ) is a σ(K)-process (not too much an interesting one, as

we admit). But (Φk − Φ
(1)
k ) is not a σ(K)-process, because the motion of the

individual in {2, 3} is not independent of whether there is an individual at {1}.

Let us denote by (ΦB,m,c;k)k∈Z, for any m ∈ Z, any B ∈ B and any c > 0,
the sub-process of (Φk) consisting of all individuals of those clans which fulfil

lim
n→∞

κ
[n]
(χm−n) (Ψ(B) > 0) ≥ c,
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and by (Φk,reg ) the sub-process consisting of all individuals of those clans which
fulfil

lim
n→∞

κ
[n]
(χm−n) (Ψ(B) > 0) = 0

for each B ∈ B and each m ∈ Z. The latter will be called the regular part of
(Φk), and Φk,cnreg := (Φk − Φk,reg ) the completely non-regular part. We denote
the corresponding κ-processes by Hreg and Hcnreg , respectively.

We will see in the next section, that (as announced in the introduction)
we might have defined these sub-processes by referring to the ancestral lines of
individuals instead of the whole clans.

The considerations in the third step of the proof of Theorem 3.4 show
that

5.5 Let (Φk) be an arbitrary κ-process. Then for any m ∈ Z, any B ∈ B
and any c > 0, (ΦB,m,c;k) is a sub-process with finitely many clans.

The following theorem claims more than incompatibility, it says that non-
regularity even implies the existence of a sub-process with finitely many clans.
(There are trivial examples of processes having a.s. infinitely many clans, but no
regular sub-process.)

Theorem 5.6. A κ-process is regular iff any sub-process with finitely
many clans is almost surely empty.

P r o o f. It is obvious that a sub-process of a regular process is regular. So
by the Proposition 5.3 the sub-process is a.s empty, if it has finitely many clans.

On the other hand, assume the κ-process (Φk) ∼ H to be non-regular.
By assumption there exist some m ∈ Z, B ∈ B and c > 0 such that (ΦB,m,c;k)
is not almost surely empty, and by 5.5 this is a sub-process with finitely many
clans. �

In the following section we use the notion of the typical clan of a κ-process
with finitely many clans.

Let (Φk) ∼ H be such a process which is assumed to be not a.s. empty.
So

GH(r((ΦΦk)) > 0) > 0 and GH(r((ΦΦk)) < ∞) = 1.

Then a non-empty realization (ΦΦk) almost surely consists of exactly r((ΦΦk))

clans (χ1
k), (χ

2
k), . . . , (χ

r((ΦΦk))
k ). Recall that in the non-stationary situation for a

process with finitely many clans, families may go extinct. So each (χr
k) might be

defined just for k which are small enough. Typical clan of (Φk) ∼ H is called the
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κ-process (Φ̂k) ∼ Ĥ defined by

Ĥ :=

∫
GH(d(ΦΦk)|r((ΦΦk)) > 0)

1

r((ΦΦk))

r((ΦΦk))∑

r=1

δ(χ̃r
k
)k∈Z

where (χ̃r
k)k∈Z denotes the two-sided infinite sequence obtained from the rth clan

by continuing it to the right -in case it goes extinct- by an infinite number of
empty populations o. (If the clan does not break off we leave it unchanged, of
course.) So a typical clan is a clan randomly chosen from a non-empty realization.

This definition differs slightly from the one in [6], definition 7.6, by the
fact that here we always have

G
Ĥ

(r((ΦΦk)) = 1) = 1.

A κ-process obeying this property will be called single-line.

6. Convergence results.

Lemma 6.1. For a κ-process (Φk) ∼ H, there exists to any m ∈ Z and
B ∈ B and almost surely to each clan (χk) the limit

κB,m((χk)) := lim
n→∞

κ
[n]
(χ

m−n
)(Ψ(B) > 0).

P r o o f. For the regular part of (Φk) the assertion is obvious. So it is
sufficient to prove the lemma for the sub-process (ΦB,m,c;k) of (Φk) ∼ H where
c > 0 is arbitrary, and we may consider the typical clan of this sub-process. Hence
we may assume even that the process (Φk) ∼ H is single-line. In this case we
have

κ
[n]
(Φ

m−n
)(Ψ(B) > 0) = H(Φm(B) > 0|Φm−n) = H(Φm(B) > 0|(Φm−l)l≥n).

Consequently, there exists a.s. the limit

κB,m((Φk)) = lim
n→∞

κ
[n]
(Φm−n)(Ψ(B) > 0) = H(Φm(B) > 0|F−∞). �

The assertion of Lemma 6.1 can be strengthened. Not only the proba-

bilities κ
[n]
(χm−n)(Ψ(B) > 0) , but even the probability distributions κ

[n]
(χm−n) do

converge. The limit distributions can be specified. For this aim let us introduce
some notations.
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Let B1, B2, . . . be a sequence of elements of B such that to each B ∈ B
there is a Bl with B ⊂ Bl. By Lemma 6.1, to a κ-process (Φk) ∼ H there exists
almost surely to each clan (χk) the quantity

κ((χk)) := sup
l≥1,m∈Z

κBl,m((χk)).

Obviously its value does not depend on the special choice of the sequence (Bk).
According to Theorem 3.4, a clan (χk) belongs to the regular part of (Φk)

iff κ((χk)) = 0.
In Section 2 we referred to the kernel K. In view of the F−∞-measurability

of this kernel the distributions K((χk), (·)) are well-defined even for clans termi-
nating to the right.

Proposition 6.2. Let (Φk) ∼ H be a κ-process, m ∈ Z, s > 0,
B1, . . . , Bs ∈ B and j1, . . . , js ≥ 0. Then we have almost surely for each clan (χk)

lim
n→∞

κ
[n]
(χm−n) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

=

{
δ(0,...,0)({(j1, . . . , js)}) if κ((χk)) = 0

K((χk), {Φm(B1) = j1, . . . ,Φm(Bs) = js}) if κ((χk)) > 0.

P r o o f. If (χk) belongs to the regular part of (Φk), the assertion is ob-
vious. So we may assume that H has finitely many clans or is even single-line.
Then the (only) clan coincides with the Markov process (Φ̂k) ∼ Ĥ and we have

lim
n→∞

κ
[n]
(χm−n) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

= Ĥ(Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F−∞)((Φ̂k))

which coincides with K((Φ̂k), {Φm(B1) = j1, . . . ,Φm(Bs) = js}) by property (2)
of the stochastic kernel K (cf. [2], 4.1.2 for a similar result). �

In Proposition 6.2 each clan may be replaced by the ancestral line of
anyone of its individuals. This is not too much a surprise in view of the consider-
ations used already to motivate Proposition 3.2: We saw that in the non-regular
part asymptotically at most one individual at time n → −∞ of a given clan is
responsible for the whole offspring in a given bounded set at time m.

Theorem 6.3. Let (Φk) ∼ H be a κ-process. Let m ∈ Z, s > 0,
B1, . . . , Bs ∈ B and j1, . . . , js ≥ 0. Then we have almost surely for each clan (χk)
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and each ancestral line (am′−n)n≥0 of an individual of χm′ , m′ ∈ Z:

lim
n→∞

κ
[n]
(χm−n) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

= lim
n→∞

κ
[n+m−m′]
(a

m′−n
) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js) .

P r o o f. Obviously we may again assume without any restriction of the
generality that H =Ĥ is single-line. We may confine ourselves to the case that
at least one of the jk’s is positive. We may also assume that the limit in the
first line is a.s. positive, since its positiveness is a left-tail event, and we may, if
necessary, pass to the restriction of H to this event, which is again a κ-process.
Choose some B ⊇ ∪Bk. Due to our assumption, we a.s. find to any sufficiently
small η > 0 some n0, such that for n ≥ n0 being large enough

0<Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F

o
−∞

)
((Φ̂o

k)) − 2η

≤Ĥ
o

(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js and all individuals
in B at time m have a common ancestor at m − n0

∣∣∣∣∣F
o
−∞

)
((Φ̂o

k)) − η

≤Ĥ
o

(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js and all individuals
in B at time m have a common ancestor at m − n0

∣∣∣∣∣ Φ̂
o
m−n

)

≤Ĥ
o

(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js and all individuals
in B at time m have a common ancestor at m − n

∣∣∣∣∣ Φ̂
o
m−n

)

≤Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|Φ̂

o
m−n

)

≤ Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F

o
−∞

)
((Φ̂o

k)) + η.

So we have for large n

Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F

o
−∞

)
((Φ̂o

k)) − 2η

≤ Ĥ
o

(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js and all individuals
in B at time m have a common ancestor at m − n

∣∣∣∣∣ Φ̂
o
m−n

)
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≤ Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|Φ̂

o
m−n

)

≤ Ĥ
o
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F

o
−∞

)
((Φ̂o

k)) + η.

We recall the fact that the population at time m is the independent superposition
of the populations generated by the individuals of Φ̂o

m−n. We can apply Lemma
3.3 which says that, from the fact that the probability of more than one of these
individuals having offspring in B is (arbitrarily) small whereas the probability
of at least one of the individuals having offspring in B is bounded away from
zero, we may conclude that there is a specific individual responsible for the whole
offspring with an overwhelming probability. So a.s. to each η′ > 0 for n being
large enough there is an individual in Φ̂o

m−n such that for its position am−n we
have

κ
[n]
(a

m−n
) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

≥ Ĥ
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|Φ̂

o
m−n

)
− η′

as well as

κ
[n]

(Φ̂m−n−δa
m−n

)
(Ψ(B) > 0) < η′.

So a.s. there is a sequence of positions (am−n) with the following properties

lim
n→∞

κ
[n]
(a

m−n
) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

= Ĥ
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F−∞

)
((Φ̂k))

and

lim
n→∞

κ
[n]

(Φ̂m−n−δa
m−n

)
(Ψ(B) > 0) = 0.

Since in a single-line process any two ancestral lines eventually coalesce, we are
through with the proof of the theorem if we can show that the (am−n) almost
surely eventually form an ancestral line.

Assume the opposite. Then there is a positive δ with the following prop-
erty: Choose an arbitrary large positive integer N. Then, tracing the evolution of
our Markov single-line κ-process, with a probability of at least δ we find a time
n > N with δam−n+1

being among the descendants of Φ̂m−n − δam−n
. Now, the
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offspring of δam−n
and Φ̂m−n − δam−n

being conditionally independent, we come
to the conclusion that with a probability of at least

δ · κ
[n]
(am−n) (Ψ(B) > 0) · κ

[n−1]
(am−n+1) (Ψ(B) > 0)

we have two different ancestors of the individuals living at m in B at the given
time m − n. By assumption,

Ĥ
(
Φ̂m(B1) = j1, . . . , Φ̂m(Bs) = js|F−∞

)
((Φ̂k))

= lim
n→∞

κ
[n]
(a

m−n
) (Ψ(B1) = j1, . . . ,Ψ(Bs) = js)

≤ lim
n→∞

κ
[n]
(am−n) (Ψ(B) > 0)

was positive, which leads to the contradictive conclusion that in a single-line
process the probability of having more than one ancestor (of the individuals in
B at m) at time m − n does not tend to zero. �

From the preceding theorem and Theorem 3.4 we deduce

Corollary 6.4. A κ-process (Φk) ∼ H is regular iff almost surely for
each m ∈ Z, each B ∈ B and each ancestral line (am−n) of an individual of Φm

we have the convergence

lim
n→∞

κ
[n]
(am−n) (Ψ(B) > 0) = 0.

(Of course, the last convergence relation yields lim
n→∞

κ
[n]
(χm−n)(Ψ(B)>0) =0

immediately only for those clans (χk) which did not die out until m. So we still
have to prove the validity of condition (5) of Theorem 3.4 for those, which died
out until ṁ. This is easy: Take some m′ < m where the clan is still alive. Then

by Proposition 6.2 from lim
n→∞

κ
[n]
(χm′−n) (Ψ(B) > 0) = 0 for each bounded B we

deduce κ((χk)) = 0 or K((χk), {Φm′ = o}) = 1 for each bounded B. In both

cases we clearly have lim
n→∞

κ
[n]
(χm−n) (Ψ(B) > 0) = 0.)

Stimulated by the paper [4] of Liggett and Port, in [7], Lemma 3.1, another
property of stationary κ-processes of first order was presented, with an intensity
kernel J satisfying an additional finiteness condition, which is complementary to
regularity. This result is still true for non-stationary κ-processes.

Proposition 6.5. Let (Φk) ∼ H be a κ-process of first order. If (Φk)
is regular, then there is no sequence (νk)k∈Z of measures on A that would satisfy
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all of the following conditions.
(a) νk ∗ J = νk+1 for all k ∈ Z,
(b) νk ≤ ΛHk

for all k ∈ Z

(c) 0 < sup
k∈Z

νk(A) < ∞.

If (Φk) is not regular and if in addition we have sup
n≥1,a∈A

J [n](a,A) < ∞, then

there exists such a sequence (νk)k∈Z of measures on A.

The finiteness condition posed on the intensity kernel J in the second
statement is fulfilled for instance if J(a,A) ≤ 1 for each a ∈ A, i.e. if each
individual has an expected number of (direct) descendants not greater than one.
This is fulfilled for clustering fields σ(K) derived from a substochastic kernel K.

P r o o f o f P r o p o s i t i o n 6.5.
1. To prove the first statement, assume there is a sequence (νk)k∈Z fulfill-

ing (a), (b) and (c). We have to show that (Φk) cannot be regular.
With (νk)k∈Z fulfilling (a) and (b) we get

(ΛHk
− νk) ∗ J = ΛHk+1

− νk+1, for k ∈ Z.

By [2], 3.3.5, we see that there are κ-processes (Φ
(1)
k ) ∼ H(1) and (Φ

(2)
k ) ∼ H(2)

with sequences of intensity measures (νk)k∈Z and (ΛHk
−νk)k∈Z, respectively. The

independent superposition of these two κ-processes is a κ-process (Φ∗
k) ∼ H∗, too.

The latter satisfies ΛH
∗

k
= ΛHk

for k ∈ Z, i.e. (Φ∗
k) and (Φk) are equivalent in

the first order sense. So by Theorem 3.7 it would be enough to show that (Φ∗
k)

is not regular. In fact, it cannot be regular in view of Theorem 5.6 since it has

(Φ
(1)
k ) ∼ H(1) as its sub-process which is easily seen to be a not almost surely

empty (by (c)) process with finitely many clans. Consider the respective family

process (ΦΦ
(1)
k ) ∼ G

H
(1) . We have (remember that the number of families is non-

increasing a.s.)

E

[
sup
k∈Z

ΦΦ
(1)
k (A)

]
= E

[
lim

k→−∞
ΦΦ

(1)
k (A)

]
= lim

k→−∞
E
[
ΦΦ

(1)
k (A)

]

≤ sup
k∈Z

E
[
Φ

(1)
k (A)

]
= sup

k∈Z

νk(A) < +∞

by (c), proving that (ΦΦ
(1)
k ) has finitely many clans.

2. Assume that (Φk) is not regular. Then we find a sub-process which,
conditioned to non-emptyness, is single-line, with the sequence of intensity mea-
sures being majorized by (ΛHk

). Hence we may assume for simplicity that (Φk)
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itself is single-line. We are going to show that in this case (ΛHk
) fulfils (c),

provided the intensity kernel J satisfies the given finiteness condition.
Choose some m ∈ Z and some bounded set B with ΛHm(B) > 0. Now we

recall from the proof of Theorem 6.3 that for the realizations (Φk) there are a.s.
two possibilities: Either we can identify a distinguished sequence of individuals’
positions (am−n)n≥0 in the sequence of counting measures (Φm−n)n≥0 such that it
forms eventually an ancestral line, where we find the individual by looking for the

one in Φm−n with the property that κ
[n]
(am−n) (Ψ(B) > 0) reaches its maximum.

Or we have lim
n→∞

κ
[n]
(Φm−n) (Ψ(B) > 0) = 0, which implies Φm(B) = 0 and even

κ
[n]
(Φm−n) (Ψ(B) > 0) = 0 for each n ≥ 0. Let us denote by Φm,n(B) the number

of individuals in Φm located in B which have the property that their ancestor
at time m − n was located at am−n,and define pm,n := J [n](am−n, B) or, in the
second case, we put Φm,n(B) = 0 and pm,n := 0. Since by assumption all ancestral
lines coalesce, and since B is bounded, we get that Φm,n(B) → Φm(B) as n → ∞.
Hence we get, using Φm,n(B) ≤ Φm(B),

ΛHm
(B) = lim

n→∞
EΦm,n(B)

= lim
n→∞

E [E [Φm,n(B)|Φm−n]]

= lim
n→∞

Epm,n

≤ sup
n≥1,a∈A

J [n](a,A).

Hence ΛHm(B) is uniformly bounded which proves (c). �

In the second part of Proposition 6.5 the finiteness condition concerning
J cannot be omitted. There are (even stationary) non-regular κ-processes of first
order with

κ
[n]
(a) (Ψ(A) < ∞) = 1 for each a ∈ A

and
sup

n≥1,a∈A
J [n](a,B) < ∞ for each B ∈ B,

for which there exists no sequence of measures (νk)k∈Z fulfilling (a), (b) and (c).

Example 6.6. Let A := {0, 1, 2, . . .} equipped with the metric ρA(a, a′)
:= |a − a′|, and let

κa := δo for a ≥ 1 and κ0 :=

∫
U(dξ)δδ0+...+δξ

,
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where U is a probability distribution on A with an infinite expectation.

We have κa(Ψ(A) = 0) = 1 for each a ≥ 1 and

κ0(Ψ(A) < ∞) = Prob(ξ < ∞) = 1.

Moreover, we have J [n](a,B) = 0 for each n ≥ 1 and a ≥ 1, whereas

J [n](0, B) = E [(δ0 + . . . + δξ)(B)] ≤ #B for each n ≥ 1 and B ∈ B,

and consequently

sup
n

≥ 1, a ∈ AJ [n](a,B) ≤ #B < ∞ for each B ∈ B.

Obviously the probability distribution P := κ0 is an equilibrium for κ. It
defines a stationary single-line (and hence completely non-regular) κ-process of
first order. Assuming the existence of a sequence of measures (νk)k∈Z fulfilling
(a), (b) and (c), we get

νk+1(A) =
∑

a∈A

νk({a})J(a,A) = νk({0})J(0, A) = νk({0}) · ∞,

which contradicts (c), unless νk({0}) = 0 for each k. But this also contradicts
(c), because then we would have νk(A) = 0 for each k.

7. A structural result for general κ-processes. Based on the results
of the preceding sections we give a general structural result for κ-processes stating
that any such process is a mixture of extremal processes being convolutions (i.e.
independent superpositions) of a regular Poisson type component with an at most
countable convolution of extremal single-line processes.

Theorem 7.1. For any κ-process (Φk) ∼ H we have the representation

H =

∫
Ho(d(Φo

k))K((Φk,reg ), (·)) ∗ *
clans (χk) in (Φk,cnreg )

K ((χk), (·))

of H as mixture of convolutions of left - tail trivial regular κ - processes
K((Φk,reg ), (·)) of Poisson type with left - tail trivial single-line κ - processes
K((χk), (·)).

The proof of this theorem is based on some preparing results.
Let, for a Fo

−∞-measurable subset C of (Mo)Z and for a κ-process H,
HC be the distribution of the sub-process consisting of all clans belonging to C

(observe that this makes sense also for clans terminating to the right).
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Assume that a countable partition {Cn}
∞
n=0 , of (Mo)Z into Fo

−∞-measur-
able subsets is given. Then any κ-process has a representation as mixture of
convolutions of left-tail trivial processes with clans in Cn, n = 0, 1, 2 . . ..

Lemma 7.2. Let (Φk) ∼ H be a κ-process. The we have

H =

∫
Ho(d(Φo

k)) *
n≥0

K((ΦCn;k), (·)),

where

(ΦCn;k) :=
∑

clans (χo
k
) in Cn

(χk) ∼ HCn

is the sub-process consisting of all clans belonging to Cn and K((ΦCn;k), (·)) the
corresponding left-tail trivial component.

P r o o f. We have to prove that Ho-a.s.

K((Φk), (·)) = *
n≥0

K((ΦCn;k), (·))

is valid. Let two integers n1 < n2 and a collection {Dn}
∞
n=0 of sets in

M⊗{n1,n1+1,...,n2} be given. By 2.2 and the definition of the kernel K we have
Ho-a.s for each j ≥ 0

Ko ((Φo
k), (ΨCn;k) ∈ Dn, n ≥ 0)

= Ho((ΨCn;k) ∈ Dn, n ≥ 0|Fo
−∞)((Φo

k))

= lim
m→∞

Ho((ΨCn;k) ∈ Dn, n ≥ 0|Fo
−m)((Φo

k))

= lim
m→∞

Ho
(
(ΨCn;k) ∈ Dn, n ≥ 0, n 6= j|Fo

−m

)
((Φo

k))

·Ho
(
(ΨCj ;k) ∈ Dj |F

o
−m)((Φo

k)
)

= lim
m→∞

Ho
(
(ΨCn;k) ∈ Dn, n ≥ 0, n 6= j|Fo

−m

)
((Φo

k))

· lim
m→∞

Ho
(
(ΨCj ;k) ∈ Dj |F

o
−m

)
((Φo

k))

= lim
m→∞

Ho
(Mo)Z\Cj

(
(ΨCn;k) ∈ Dn, n ≥ 0, n 6= j|Fo

−m

)
((Φo

(Mo)Z\Cj ;k
))
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· lim
m→∞

Ho
Cj

(
(ΨCj ;k) ∈ Dj|F

o
−m

)
((Φo

Cj ;k))

= Ho
(Mo)Z\Cj

(
(ΨCn;k) ∈ Dn, n ≥ 0, n 6= j|Fo

−∞

)
((Φo

(Mo)Z\Cj ;k
))

·Ho
Cj

(
(ΨCj ;k) ∈ Dj|F

o
−∞

)
((Φo

Cj ;k))

= Ko
(
(Φo

(Mo)Z\Cj ;k
), (ΨCn;k) ∈ Dn, n ≥ 0, n 6= j

)

·Ko
(
(Φo

Cj ;k), (ΨCj ;k) ∈ Dj

)
.

In view of the fact that M⊗Z is countably generated by sets in⋃
n1<n2

M⊗{n1,n1+1,...,n2}, this proves that a.s. with respect to Ko((Φo
k), (·)) the

sequence {(ΨCn;k)}n≥0 is completely independent and the distribution of (Ψo
Cj ;k

)

is Ko((Φo
Cj ;k

), (·)). From the relation
∑

n≥0
(ΨCn;k) = (Ψk) we finally deduce the

desired result. �

As a first application of the preceding lemma we deduce from Corollary
4.5

Corollary 7.3. For any κ-process (Φk) ∼ H we have the representation

H =

∫
Ho(d(Φo

k))K((Φk,reg ), (·)) ∗ K((Φk,cnreg ), (·))

of H as mixture of convolutions of left-tail trivial regular κ-processes
K((Φk,reg ), (·)) which are of Poisson type with left-tail trivial completely non-
regular κ-processes K((Φk,cnreg ), (·)).

Corollary 7.4. For any left-tail trivial κ-process (Φk) ∼ H the distrib-
ution H is the convolution Hreg ∗ Hcnreg of the distributions of its regular (and
hence Poisson type) and completely non-regular parts.

P r o o f o f Th e o r e m 7.1.
We have to analyze the structure of the completely non-regular compo-

nents K((Φk,cnreg ), (·)). Let {Bn}n≥0 be an ascending sequence of sets in B such
that each bounded B is covered by some Bn. We define

C0 : = {(Φo
k) ∈ (Mo)Z : lim

m′→−∞
κ

[m′]
(Φo

m−m′
)(Ψ(Bl) > 0) = 0 for all l ≥ 0,m ∈ Z},

C̃0 : = ∅
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C̃n : = {(Φo
k) ∈ (Mo)Z : lim

m′→−∞
sup

−n≤m≤n
κ

[m′]
(Φo

m−m′
)(Ψ(Bn) > 0) ≥ 1/n}, n ≥ 0,

Cn : = C̃n\C̃n−1, n ≥ 1.

By Lemma 7.2 we have the representation

(o) H =

∫
Ho(d(Φo

k)) *
n≥0

K((ΦCn;k), (·)),

where the κ-process K((ΦC0;k), (·)) is a.s. regular and left-tail trivial, whereas
for each n ≥ 1, the κ-process K((ΦCn;k), (·)) is a.s. the distribution of a left-
tail trivial completely non-regular κ-process with all of its clans belonging to
Cn a.s. Just as in the third step of the proof of Theorem 3.4 we see that a.s.
K((ΦCn;k), (·)) is the distribution of a κ-process with finitely many clans, where
the number of clans is given by the left-tail measurable quantity r = r((Φo

Cn;k)).
We have a.s. for each n ≥ 1, arbitrary integers n1 < n2 and an arbitrary D in
(Mo)⊗{n1,n1+1,...,n2}

Ko
(
(Φo

Cn;k), (Ψ
o
k) ∈ D

)

= Ho
Cn

(
(Ψo

k) ∈ D|Fo
−∞

)
((Φo

Cn;k))

= lim
m→−∞

Ho
Cn

((Ψo
k) ∈ D|Fo

m) ((Φo
Cn;k))

= lim
m→−∞

(
*

clans (χo
k
) in Cn

Uo
(χo

m)

)
(
(Ψo

n1
, . . . ,Ψo

n2
) ∈ D

)

where in the last row the convolution extends over all clans in (Φo
k) belonging

to Cn and Uo
(χo

m) denotes the Markov chain starting at time m a κo-branching
evolution, the starting configuration being given by χo

m. This is an a.s. finite
convolution, and by the method used in the proof of Proposition 6.2 we find that
the individual convolution factor tends weakly towards Ko ((χo

k), (·)). Hence we
may continue the chain of equations by

Ko
(
(Φo

Cn;k), (Ψ
o
k) ∈ D

)

=

(
*

clans (χo
k
) in Cn

Ko ((χo
k), (·))

)
(
(Ψo

n1
, . . . ,Ψo

n2
) ∈ D

)
.



308 Klaus Matthes, Kurt Nawrotzki, Rainer Siegmund-Schultze

So we have almost surely for each n

Ko
(
(Φo

Cn;k), (·)
)

= *
clans (χo

k
) inCn

Ko ((χo
k), (·)) .

Observe that the totality of all clans of (Φk) belonging to all Cn forms the
completely non-regular part (Φk,cnreg ). So the last equation in connection with
(o) and Corollary 7.3 leads us to the desired structural assertion. �

We conclude with a counterpart to Corollary 6.4, which revealed the na-
ture of left-tail trivial regular processes as Poisson type processes.

Proposition 7.5. A left-tail trivial κ-process (Φk) ∼ H is completely
non-regular iff H is the convolution *

i∈I
Hi of an at most countable collection of

left-tail trivial single-line κ-processes.

P r o o f. 1. Assume that H is completely non-regular and left-tail trivial.
By Theorem we may represent H as a mixture of κ-processes and since H

is assumed to be extremal, this mixture is trivial in the sense that almost all
components in this representation coincide with H. So we find some sequence
(Φo

k)k∈Z with (observe that the regular part of (Φo
k)k∈Z is Ho-almost surely empty)

H = *
clans (χk) in (Φk,cnreg )

K ((χk), (·)) ,

representing H as an at most countable convolution of left-tail trivial single-line
κ-processes.

2. Assume there is a representation H = *
i∈I

Hi as convolution of an at

most countable collection of left-tail trivial single-line κ-processes. Then H is
completely non-regular since a.s. each clan (as realization of some of the single-
line processes Hi) belongs to the completely non-regular part. H is left-tail-
trivial as an at most countable convolution of left-tail trivial processes (see [2],
Proposition 4.1.9.) �

8. Feeding sequences of regions. We defined in Section 5 the notion
of a κ-process with finitely many clans by referring to the corresponding family
process. In [6], Theorem 6.1, for the case of stationary κ-processes this notion
could be characterized by properties of the original κ-process. This characteriza-
tion remains valid in the non-stationary case as well. The following theorem even
gives a characterization by almost sure properties of the realizations. It turns out,
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that there exists a sequence of regions in the phase space eventually comprising
exactly as many individuals as there are clans and which asymptotically feed the
whole population:

Theorem 8.1. For any κ-process with finitely many clans, there is a
sequence S−1, S−2, . . . ∈ A, such that we have almost surely

Φ−n(S−n) −→
n→∞

r((ΦΦk))

and

κ
[l+n]
(Φ−n((·)\S−n)) (Ψ(C) > 0) −→

n→∞
0 for each l ∈ Z and C ∈ B.

Vice versa, if there is, for a κ-process (Φk) ∼ H, a sequence S−1, S−2, . . . ∈ A,
with the sequence

H(Φ−n(S−n) ∈ (·)), n = 1, 2, . . .

being weakly compact, and the following convergence relation being valid in prob-
ability

κ
[l+n]
(Φ−n((·)\S−n)) (Ψ(C) > 0) −→

n→∞
for each l ∈ Z and C ∈ B,

then (Φk) ∼ H has finitely many clans.

P r o o f. 1. Let us assume that (Φk) ∼ H is a single-line κ-process. Choose
an increasing sequence (Bk)k=1,2,... of sets in B such that for each bounded B
there is some Bk ⊇ B. Fix some number k and consider all individuals of all
populations Φl, −k ≤ l ≤ k, which are located within Bk. These are finitely
many individuals, so there is a random time Nk with all these individuals having
a common ancestor in Φ−Nk

.
So for each k we see as in the proof of Theorem 6.3 that there is a.s.

eventually at most one individual (say at position a) in Φ−n with

sup
−k≤l≤k

κ
[l+n]
(a) (Ψ(Bk) > 0) ≥ 2−k,

and if we choose any ancestral line (a−n), then we even eventually have

sup
−k≤l≤k

κ
[l+n]
(Φ−n−δa−n

) (Ψ(Bk) > 0) < 2−k.

Let us denote by Sk,n the set {a ∈ A : sup
−k≤l≤k

κ
[l+n]
(a) (Ψ(Bk) > 0) ≥ 2−k}. (Observe

that, for fixed n, the sequence of sets Sk,n is non-decreasing.) Hence there exists
a number N(k) such that

H (Φ−n(Sk,n) > 1 for at least one n ≥ N(k)) < 2−k
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as well as

H



 sup−k≤l≤k κ
[l+n]
(Φ−n((·)\Sk,n)) (Ψ(Bk) > 0) ≥ 2−k+1

for at least one n ≥ N(k)



 < 2−k.

(Here in the last line we had to take into account the possibility that the common
ancestor at time −n belongs to the complement of Sk,n.)

Of course we may choose the function N(k) to increase in k. In this case
for sufficiently large n there is a unique k(n) with N(k(n)) ≤ n < N(k(n) + 1).
Put S−n := Sk(n),n. Almost surely, the ancestral line (a−n) of any individual in
(Φk)k∈Z has the property a−n ∈ S−n for n being large enough. In fact, due to
our assumption (a single-line process is a.s. non-empty) there is one k and one
l, −k ≤ l ≤ k with Φl(Bk) > 0. Hence we have, conditioned on this event almost

surely, for these k, l, that s := lim
n→∞

κ
[l+n]
(a−n) (Ψ(Bk) > 0) > 0. So for k′ ≥ k being

chosen in such a way that 2−k′

< s
2 and sufficiently large n ≥ N(k′) we have

k(n) ≥ k′ and consequently

κ
[l+n]
(a−n)

(
Ψ(Bk(n)) > 0

)
≥ κ

[l+n]
(a−n) (Ψ(Bk′) > 0) ≥

s

2
> 2−k′

≥ 2−k(n)

proving that a−n ∈ Sk(n),n = S−n.
On the other hand we have

H (Φ−n(S−n) > 1 infinitely often)

≤ H

(
for infinitely many k we have Φ−n(Sk,n) > 1

for at least one n ≥ N(k)

)
= 0

in view of the Borel-Cantelli lemma. This proves that Φ−n(S−n) = 1 almost
surely for sufficiently large n.

Now choose some l ∈ Z and C ∈ B. We have

H
(
κ

[l+n]
(Φ−n((·)\S−n)) (Ψ(C) > 0) does not tend to zero as n → ∞

)

≤ H
(
κ

[l+n]
(Φ−n((·)\S−n)) (Ψ(C) > 0) ≥ 2−k(n)+1 infinitely often

)

≤ H




for infinitely many k we have

κ
[l+n]
(Φ−n((·)\S−n)) (Ψ(C) > 0) ≥ 2−k+1

for at least one n ≥ N(k)


 = 0
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again in view of the Borel-Cantelli lemma.
This proves the first part of the theorem, since for a process with finitely

many clans the typical clan has eventually exactly one individual in S−n so that
Φ−n(S−n) −→

n→∞
r((ΦΦk)) a.s.

2. To prove the second part of the theorem, observe that the existence of a
sequence S−1, S−2, . . . ∈ A with the given properties for the process (Φk) implies
that the sequence S�

−1, S
�

−2, . . . (where S�

−k := {Φ ∈ A : Φ(S−k) > 0}, k = 1, 2, . . .)
obeys the same properties if the family process (ΦΦk) ∼ GH is considered. So we
may assume without any loss of the generality that κ describes a substochas-
tic shift in A. We have to prove that the number of individuals Φk(A) is a.s.
uniformly bounded. In fact, assume the opposite. Then there is some δ > 0
such that to each M > 0 there exists a bounded set C and some l ∈ Z with
H(Φl(C) > M) > δ. It is easy to see that the second property of the sequence
S−1, S−2, . . . implies that, for sufficiently large n, H(Φ−n(S−n) > M) > δ/2. In
fact, this property says that for large n the individuals of Φl lying in C are with
a probability arbitrarily close to one descendants of those individuals of Φ−n lo-
cated in S−n. Since κ describes a substochastic shift, the number of descendants
is not greater than Φ−n(S−n).

With M being arbitrary, the relation H(Φ−n(S−n) > M) > δ/2 can
be fulfilled for all sufficiently large n only at the cost of a contradiction to the
tightness of {H(Φ−n(S−n) ∈ (·))}n=1,2,.... �
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