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Abstract. Here we prove results about Riesz summability of classical La-
guerre series, locally uniformly or on the Lebesgue set of the function f such

that
(∫

∞

0
(1 + x)mp|f(x)|pdx

)1/p
< ∞, for some p and m satisfying 1 ≤ p ≤ ∞,

−∞ < m <∞.

1. Introduction and statement of the main results. Consider the La-

guerre series in the form

f(y) ∼
∞
∑

k=0

fkΦ
δ
k(y), fk =

∫ ∞

0
f(y)Φδ

k(y)dy, δ ≥ −1

2
,

and the corresponding partial sum

Eλf(y) =

∫ ∞

0
e(λ, x, y)f(x)dx,

where

e(λ, x, y) =
∑

µk<λ

Φδ
k(x)Φ

δ
k(y),
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and

µk = 4k + 4, Φδ
k(x) =

[

Γ(k + 1)

Γ(k + δ + 1)

]1/2

e−x
2/2

√
2xδ+1/2Lδk(x

2)

are the eigenvalues and orthonormalized eigenfuctions of the operator

A = − d2

dx2
+ x2 + (δ2 − 1

4
)x−2 + 2 − 2δ in L2(0,∞).

Here Lδk(x) = (k!)−1exx−δ
(

d

dx

)k

(e−xxk+δ) are the Laguerre polynomials and e(λ, x, y)

is called the spectral function of A.

The Laguerre series are investigated in the classical Szegö book [7], where suf-

ficient conditions are given on the behaviour of the function f at infinity so that the

following equiconvergence result holds:

Eλf(y) −
∫ y+ε

y−ε
e0(λ, x, y)f(x)dx→ 0, 0 < ε < y,

locally uniformly on (0,∞). Here e0(λ, x, y) is the spectral function of the main part

− d2

dx2
.

These conditions are significantly improved in [3], where the method of the

spectral function is applied. To enlarge further the classes of functions we can consider

the Riesz summability method. For other results see, for example [4], [5], [9] and the

bibliography in [8].

Let

Eαλ f(y) =
∑

(

1 − µk
λ

)α

fkΦ
δ
k(y), µk < λ

be the Riesz means of order α. Then

(1.1) Eαλ f(y) =

∫ ∞

0
Iαe(λ, x, y)f(x)dx,

where

Iαe(λ, x, y) =

∫ λ

0

(

1 − µ

λ

)α

de(µ, x, y)

is the Riesz kernel of order α.

The main results proved in this paper are concerned with:

a) Equisummability locally uniformly for the functions f from the space Lpm
with a norm

‖f‖m.p =

(∫ ∞

0
(1 + x)mp|f(x)|pdx

)
1
p

, 1 ≤ p ≤ ∞.
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b) Summability on the Lebesgue set of the functions from the space Lpm for

1 ≤ p <∞, m ≥ −m0(α, p) if p 6= 4/3 and m > −m0(α, 4/3) if p = 4/3.

Here

(1.2) m0(α, p) = 2α+ min

(

1

p
, 1 − 1

3p

)

, α > 0.

Note that in [9] a related result is proved for α >
1

6
and for the case m = 0.

c) Summability locally uniformly for the functions f with the properties: f(x)

and f ′(x) are O(xβ) as x→ ∞ for β < 2α + 1. The case α = 0 is considered in [3].

The author expresses his gratefulness to Prof. G. E. Karadzhov, who initiated

this work and served as a supervisor during its completion.

We start with theorems about equisummability locally uniformly, which means

that as λ→ ∞

(1.3) Rαλf(y)
def
= Eαλf(y) −

∫ y+ε

y−ε
f(x)Iαe(λ, x, y)dx → 0,

uniformly with respect to y ∈ [c, d] for any compact interval [c, d] ⊂ (0,∞), where

ε ∈ (0, c).

Theorem 1 (equisummability locally uniformly). If α > 0 then the conver-

gence (1.3) is fulfilled in the following cases:

(a) f ∈ Lpm, 1 ≤ p <∞, p 6= 4

3
if m ≥ −m0(α, p)

(b) f ∈ L
4/3
m if m > −m0

(

α,
4

3

)

(c) f ∈ L∞
m if m > −m0(α,∞)

(d) f ∈ Cm if m ≥ −m0(α,∞).

Here Cm is the subspace of L∞
m consisting of all continuous functions f such

that xmf(x) → 0 as x→ ∞ and f(x) → 0 as x→ 0.

Theorem 2. Let f ∈ L1
loc[0,∞) and the derivative f ′(x) exists for x > Af . If

f(x) and f ′(x) are O(xβ), x→ ∞ for β < 2α+ 1, α > 0, then the convergence (1.3) is

true.

Corollary 1 (equisummability on the Lebesgue set). Under the conditions of

Theorems 1 or 2 we have

(1.4) Eαλ f(y) −
∫ y+ε

y−ε
f(x)Iαe0(λ, x, y)dx → 0,
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where y ∈ (0,∞) is on the Lebesgue set of the function f and 0 < ε < y. Here

e0(λ, x, y) =
1

π
· sin

√
λ(x− y)

x− y

and

(1.5) Iαe0(λ, x, y) = λ1/2Fα(
√
λ|x− y|),

where

(1.6) Fα(s) = dαs
− 1

2
−αJ1/2+α(s), dα = 2α(2π)−

1
2 Γ(α+ 1).

Corollary 2 (summability on the Lebesgue set). Under the conditions of

Theorem 1 or 2 , Eαλ f(y) → f(y) on the Lebesgue set of the function f .

Corollary 3 (summability in Lqloc). Under the conditions of Theorem 1 or 2,

Eαλf → f in Lqloc 1 ≤ q <∞ if in addition f ∈ Lqloc(0,∞).

Corollary 4 (summability locally uniformly). Under the conditions of Theo-

rem 1 or 2, Eαλ f(y) → f(y) locally uniformly if in addition f is continuous.

Corollary 5 (localization principle). Let y > 0, ε > 0 be fixed. Then under

the conditions of Theorem 1 or 2, Eαλf → 0 if f(x) = 0 for |x− y| < ε.

2. Asymptotics of Riesz kernels. In proving the main results, stated in §
1, we shall apply the method of the spectral function as in [3] and especially [4], where

this method was used to find the uniform asymptotics of the Riesz kernels of order α

in the case of Hermite series.

First we state the uniform asymptotics of the Riesz kernels (1.1) which we need.

It is convenient to consider also the functions

(2.1) eα(λ, x, y) = λαIαe(λ, x, y), Eα(λ, x, y) = eα(λ,
√
λx,

√
λy).

For our purposes it is sufficient to consider only the cases: 0 < a ≤ x < ∞, 0 <

c ≤ y ≤ d < ∞. It is convenient to split the interval [a,∞) into the intervals [a, b],

[A, (1 − ε)
√
λ], [(1 − ε)

√
λ, (1 + ε)

√
λ], [(1 + ε)

√
λ,∞).

Theorem 3. Let 0 < a ≤ x ≤ b and 0 < c ≤ y ≤ d. Then,

(2.2) |Iαe(λ, x, y) − (Iαe0(λ, x, y) + CδI
αe0(λ, x,−y))| ≤ C(1 +

√
λ|x− y|)−α−1,
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where α > 0, Iαe0(λ, x, y) is given by (1.5) and Cδ is a constant.

Here and later on, C is a positive constant, not depending on λ, x, y.

Theorem 4. Let
A√
λ
≤ x ≤ 1− ε,

c√
λ
≤ y ≤ d√

λ
. Then for A > d, ε > 0 we

have the uniform asymptotics

(2.3) Eα(λ, x, y) = Fα(λ, x, y) + CδFα(λ, x,−y),

where

(2.4) Fα(λ, x, y) = λ−1/2
4
∑

k=1

bk(λ, x, y)e
iλψk + x−1−αO(λ−1)

and

(2.5) |bk| ≤ Cx−1−α, |∂xbk| ≤ Cx−2−α

(2.6) |∂xψk|2 = 1 − x2, |∂2
xψk|2 ≤ C(1 − x2)−1.

Theorem 5. If 1−ε ≤ x ≤ 1+ε,
c√
λ
≤ y ≤ d√

λ
, then there exists a positive

number ε > 0 such that the uniform asymptotics (2.3) is satisfied, where

(2.7) Fα(λ, x, y) =
∞
∑

k=0

(a1k(λ, x, y)λ
−k−1/3 + b1k(λ, x, y)λ

−k−2/3)

and

a1k = (ake
λA + bke

λA)Ai(λ2/3B), b1k = (cke
λA + dke

λA)Ai′(λ2/3B).

The functions λ→ ak, bk, dk, ck or their derivatives with respect to x are bounded. Here

Ai(s) =
1

2π

∫

ei(st+t
3/3) is the Airy function, A = A(x, y), B = B(x, y) are smooth,

ReA = 0 and B(x, y) ∼ C(y)(x2 − 1) as x2 → 1, c(y) > 0.

Analogously to Theorem 6 [3] we have

Theorem 6. Let x > 1 + ε for some ε > 0. Then

|Eα(λ, x, y)| ≤ C(x2 − 1)−1/4λ−1/2 exp(−Cε(x2 − 1)1/2λ), C > 0.
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As a consequence of Theorems 5 and 6 it follows

Corollary 6. If x2 > λ+ λ1/3+ε, ε > 0 then

|Iαe(λ, x, y)| ≤ Cλ−α−1/3 exp



−Cλ1/3

(

x2

λ
− 1

)1/2


 .

From Theorem 5 and the asymptotics of the Airy function it follows

Corollary 7. If 1 − ε1 < x2 < 1 − λ−2/3+ε, ε > 0 and
c√
λ

≤ y ≤ d√
λ
, then

we have the uniform asymptotics (2.3), where

Fα(λ, x, y) = λ−1/2
4
∑

k=1

(

ak(1 − x2)−1/4 + bk(1 − x2)1/4
)

eiλψk + (1 − x2)−1O(λ−1),

the functions λ → ak(λ, x, y), bk(λ, x, y) or their derivatives over x are bounded, and

ψk satisfy (2.6).

3. Proof of Theorem 1. First, according to [7], we have |e(λ, x, y)| ≤ c if

0 < x, y < c, |x− y| ≥ ε > 0, and consequently

|Iαe(λ, x, y)| ≤ c if 0 < x, y < c, |x− y| > ε > 0.

Since

Rαλf(y) =

(∫ y−ε

0
+

∫ ∞

y+ε

)

f(x)Iαe(λ, x, y)dx

we can write

(3.1) |Rαλf(y)| ≤ c

[

∫ A

0
|f(x)|dx+ |K(λ, y)|

]

,

where c ≤ y ≤ d and for some large A > 0,

(3.2) K(λ, y) =

∫ ∞

A
f(x)Iαe(λ, x, y)dx.

Now let Ki(λ, y) =
∫

ai(λ, x)f(x)Iαe(λ, x, y)dx, where ai(λ, x) is the characteristic

function of the set Ai and

A1 = {x ∈ R+, A
2 < x2 < (1 − ε)λ}, A2 = {x ∈ R+, (1 − ε)λ < x2 < λ− λ1/3},

A3 = {x ∈ R+, |x2 − λ| < λ1/3}, A4 = {x ∈ R+, λ+ λ1/3 < x2 < λ+ λ1/3+ε},
A5 = {x ∈ R+, x

2 > λ+ λ1/3+ε}
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The estimates below are uniform with respect to y ∈ [c, d] and the number A is

large enough, say A > d+ 1.

a) Estimate of K1(λ, y). Using Theorem 4 we have

|Iαe(λ, x, y)| ≤ Cλ−α/2x−1−α, x ∈ A1.

Hence by the Hölder inequality,

|K1(λ, y)| ≤ cλ−α/2
∫

a1(λ, x)|f(x)|x−1−αdx

≤ cλ−α/2‖f‖m,pJ(λ),

where

J(λ) =

(

∫

√
λ

1
σ−(1+α+m)p′dσ

)
1
p′

,
1

p′
+

1

p
= 1.

Therefore

(3.3) |K1(λ, y)| ≤ c‖f‖m,p if m ≥ −2α− 1/p, 1 ≤ p <∞

(3.4) |K1(λ, y)| ≤ λ−γ‖f‖m,∞ if m ≥ −2α, α > 0 for some γ > 0.

b) Estimate of K2(λ, y). Using Theorem 5 and the estimates |Ai(s)| ≤ c|s|−1/4,

|Ai′(s)| ≤ c(1 + |s|)1/4, we have

|Iαe(λ, x, y)| ≤ cλ−α−1/2

(

1 − x2

λ

)−1/4

, x ∈ A2.

Therefore

|K2(λ, y)| ≤ cλ−α−1/2−m/2‖f‖m,pJ(λ),

where

J(λ) = 
1

2p′

(∫ 1

λ−2/3
σ−p

′/4dσ

)

1
p′

,

hence

(3.5) |K2(λ, y)| ≤ cλ−(m+m0)/2‖f‖m,p, p 6= 4/3

(3.6) |K2(λ, y)| ≤ cλ−(m+m0)/2(log λ)1/4‖f‖m,p, p = 4/3.
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Here m0 is given by (1.2).

c) Estimate of K3(λ, y). According to Theorem 5 we have

|Iαe(λ, x, y)| ≤ λ−α−1/3, x ∈ A3.

Hence

|K3(λ, y)| ≤ cλ−α−1/3‖f‖m,pJ(λ),

where

J(λ) =

(∫

a3(λ, x)x
−mp′dx

) 1
p′ ≤ cλ

−m
2
− 1

6p′ .

Therefore

(3.7) |K3(λ, y)| ≤ cλ−(m+m0)/2‖f‖m,p.

d) Estimate of K4(λ, y). Theorem 6 implies

|Iαe(λ, x, y)| ≤ cλ−α−1/2

(

x2

λ
− 1

)− 1
4

, x ∈ A4.

Hence

|K4(λ, y)| ≤ cλ−α−
1
2p

−m
2 ‖f‖m,pJ(λ),

where

J(λ) =

(

∫ λ−2/3+ε

λ−2/3
σ−p

′/4dσ

)
1
p′

.

Therefore

(3.8) |K4(λ, y)| ≤ cλ−(m+m0)/2‖f‖m,p, 1 ≤ p <
4

3

(3.9) |K4(λ, y)| ≤ cλ−(m+m0)/2(log λ)1/4‖f‖m,p, p =
4

3

(3.10) |K4(λ, y)| ≤ cλ−(m+m0)/2−γ‖f‖m,p, if p >
4

3
for some γ > 0.

f) Estimate of K5(λ, y). Corollary 6 gives

|Iαe(λ, x, y)| ≤ cλ−α−1/3 exp(−cλε/2), if x ∈ A5, x < λ
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|Iαe(λ, x, y)| ≤ cλ−α−1/3 exp(−c
√
x), if x > λ, c > 0.

Hence we obtain

(3.11) |K5(λ, y)| ≤ cλ−γ‖f‖m,p for some γ > 0.

Thus the estimates (3.3)–(3.11) give

(3.12) |Rαλf(y)| ≤ c‖f‖m,p, if m ≥ −m0, 1 ≤ p <∞, p 6= 4/3

Rαλf(y) → 0 if m > −m0(α, p) and p = 4/3 or p = ∞.

On the other hand it is not hard to see that

(3.13) Rαλf → 0 uniformly on [c, d] if f ∈ C∞
0 (0,∞).

Finally, if f ∈ Lpm, 1 ≤ p < ∞ or f ∈ Cm, then we can find g ∈ C∞
0 such that

‖f − g‖m,p < ε. Then (3.12) implies |Rαλf | ≤ cε+ |Rαλg|, whence (3.13) gives Rαλf → 0

locally uniformly.

4. Proof of Theorem 2. We start with (3.1) and (3.2), where 1 ≤ i ≤ 4,

ai(λ, x) is the characteristic function of the set Bi and B1 = A1,

B2 =
{

x : (1 − ε)λ < x2 < λ− λ
1
3
+ε
}

, B3 =
{

x : |x2 − λ| < λ
1
3
+ε
}

, B4 = A5.

Now, let Bi(λ, y) = Ki(λ,
√
λy), i = 1, 2. Then

Bi(λ, y) = λ1/2−α
∫ ∞

0
ai(λ,

√
λx)f(

√
λx)Eα(λ, x, y)dx.

a) Estimate of K1(λ, y). Using Theorem 4 we can write

B1(λ, y) = I(λ, y) + CδI(λ,−y),

where

(4.1) I(λ, y) = λ1/2−α
∫

a1(λ,
√
λx)f(

√
λx)Fα(λ, x, y)dx

and Fα(λ, x, y) is given by (2.4). It is enough to find the asymptotics of I(λ, y). We

have by (2.4),

(4.2) I(λ, y) = λ−α
4
∑

k=1

∫ ∞

0
a1(λ,

√
λx)bk(λ, x, y)e

iλψkf(
√
λx)dx+R1O(λ−α−1/2)
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where, using f(x) = O(xβ), x→ ∞,

(4.3) R1 =

∫

a1(λ,
√
λx)|f(

√
λx)|x−1−αdx ≤ Cλβ/2J(λ),

J(λ) =

∫ 1

λ−1/2
x−1−α+βdx ≤ c











λ−β/2+α/2, β < α
log λ, β = α
1, β > α

.

Then integrating by parts and using (2.5), (2.6), we get for β ≤ 2α+ 1,

|I(λ, y)| ≤ Cλ−α−1/2+β/2J(λ) + Cλ−1/2.

If β < 2α+ 1, we see that |I(λ, y)| ≤ λ−γ for some γ > 0, hence

I(λ, y) → 0 locally uniformly

or

(4.4) K1(λ, y) → 0 locally uniformly.

b) Estimate of K2(λ, y). We shall use Corollary 7. Then analogously to (4.1),

(4.2) and (4.3) we see that it suffices to estimate

(4.5) B(λ, y) = λ−α
∫

a2(λ,
√
λx)a(λ, x, y)(1−x2)−1/4f(

√
λx)eiλψdx+O(λ−1/2−α)R2

where a(λ, x, y) = ak(λ, x, y) and

(4.6) R2 =

∫

a2(λ,
√
λ)|f(

√
λx)|(1 − x2)−1dx ≤ cλβ/2 log λ.

Let

I(λ) =

∫

a2(λ,
√
λ)a(λ, x, y)(1 − x2)−1/4f(

√
λx)eiλψdx.

Integrating by parts and using (2.6) we get

|I(λ)| ≤ Cλ−1
∫

a2(λ,
√
λx)

[

λ1/2|f ′(
√
λx)|(1 − x2)−3/4+

|f(
√
λx)|(1 − x2)−7/4

]

dx+ Cλ−1/2.

Since 1 − x2 > λ−2/3+δ we obtain for β > 0, ε > 0,

(4.7) |I(λ)| ≤ Cλ−1/2+β/2.
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Thus (4.5), (4.6) and (4.7) imply

|B(λ, y)| ≤ Cλ−α−1/2+β/2 + Cλ−α−1/2+β/2 log λ ≤ Cλ−γ for some γ > 0

since β < 2α+ 1. In other words,

(4.8) |K2(λ, y)| ≤ Cλ−γ → 0 locally uniformly.

c) Estimate of K3(λ, y). Theorem 5 gives

|K3(λ, y) ≤ Cλ−α−1/3
∫ ∞

0
a3(λ, x)|f(x)|dx.

Hence

(4.9) |K3(λ, y)| ≤ Cλ−α+β/2−1/2+ε → 0 if 0 < ε < α− β

2
+

1

2
.

Finally it is easy to prove (see 3.11) that

(4.10) K4(λ, y) → 0 locally uniformly.

Thus (3.1) and the estimates (4.4), (4.8), (4.9), (4.10) give

|Rαλf(y)| ≤ C

∫ A

0
|f(x)|dx+ o(1), locally uniformly.

Now the proof finishes analogously to the proof of Theorem 1. �

5. Proof of Corollaries 1–4.

P r o o f of C o r o l l a r y 1. Let y ∈ (0,∞) is on the Lebesgue set of the function

f and 0 < ε < y. Comparing (1.3), (1.4) we have only to prove

(5.1) I(λ, y) =

∫ y+ε

y−ε
f(x)[Iαe(λ, x, y) − Iαe0(λ, x, y)]dx → 0.

Let f̃(x) = f(x)χ(x) and let χ(x) be the characteristic function of the set

(y − ε, y + ε). According to theorem 3,

(5.2) |Iαe(λ, x, y) − Iαe0(λ, x, y)| ≤ C[λ−α/2 +Hα(
√
λ|x− y|)], α > 0,

0 < y − ε ≤ x ≤ y + ε, where Hα(s) = (1 + s)−α−1, s > 0. Since α > 0, then

Hα(s) ∈ L1(R), hence Theorem 1.25 [6] gives
∫

f̃(x)
√
λHα(

√
λ|x− y|)dx→ f̃(y),
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or

(5.3)

∫ y+ε

y−ε
f(x)Hα(

√
λ|x− y|)dx→ 0.

Evidently (5.1) follows from (5.2), (5.3). �

P r o o f of C o r o l l a r y 2. According to Corollary 1 we have to prove

I(λ, y) =

∫ y+ε

y−ε
f(x)Iαe0(λ, x, y) → f(y),

where y is on the Lebesgue set of the function f and 0 < ε < y. Using (1.5) and f̃ ,

Fα(s) ∈ L1(R) for α > 0, we see that Theorem 1.25 [6] implies

I(λ, y) =

∫ +∞

−∞
f̃(x)λ1/2Fα(

√
λ|x− y|)dx→ f̃(y) = f(y). �

P r o o f of C o r o l l a r y 3. First we have according to Theorem 1 or 2 Rαλf → 0

in Lqloc(0,∞). Thus according to (1.3) it is sufficient to prove

(5.4) I(λ, y) =

∫ y+ε

y−ε
f(x)Iαe(λ, x, y)dx → f(y) if Lq[c, d],

0 < c < d, 0 < ε < c. Let f̃(x) = f(x)χ(x), where χ is the characteristic function of

(c− ε, c + ε). Hence we can write

(5.5) I(λ, y) = J1(λ, y) − J2(λ, y) for c ≤ y ≤ d,

where

J1(λ, y) =

∫ ∞

0
f̃(x)Iαe(λ, x, y)dx,

J2(λ, y) =

∫

M
f̃(x)Iαe(λ, x, y)dx, M = {x : |x− y| > ε} ∩ (c− ε, d+ ε).

According to Theorem 3 we have |Iαe(λ, x, y)| ≤ Cλ−α/2 if c ≤ y ≤ d, x ∈ M . Since

α > 0 it follows

(5.6) J2(λ, y) → 0 uniformly in c ≤ y ≤ d.

On the other hand, Theorem 1.25 [6] gives

∫

f̃(x)
√
λHα(

√
λ|x− y|)dx→ f̃(y) in Lq if 1 ≤ q <∞,Hα ∈ L1(R).
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Therefore using (5.2) and α > 0, we get

∫ ∞

0
f̃(x)Iαe(λ, x, y)dx −

∫ ∞

−∞
Iαe0(λ, x, y)f̃(x)dx → 0

in Lq(c, d), 1 ≤ q <∞.

The same Theorem 1.25 [6] and (1.5), (1.6) imply

∫

f̃(x)Iαe0(λ, x, y)dx → f̃(y) in Lq if 1 ≤ q <∞.

Therefore,

(5.7) J1(λ, y) → f̃(y) in Lq(c, d).

Thus (5.4) follows from (5.5)–(5.7). �

P r o o f of C o r o l l a r y 4. Let f ∈ C(0,∞) and 0 < c ≤ y ≤ d. Find a

function g ∈ C0(R) such that g(y) = f(y) for c ≤ y ≤ d. Further we can proceed as

in the proof of Corollary 3. Thus we have again (5.4)–(5.7) but now the convergence is

uniform for y ∈ [c, d]. �

6. Proof of Theorem 3. We shall use the formula

(6.1) eα(λ, x, y) = Γ(α+ 1)(2πi)−1
∫

S
eλpV (p, x, y)Hα(λ, p)χ(p)dp,

where S =

(

ε− i
π

2
, ε+ i

π

2

)

, ε > 0, α > 0, χ(p) ∈ C∞
0 (S) and s→ Hα(s, p) is defined

by

(6.2) Hα(s, p) =
+∞
∑

k=−∞
eiskπ/2(p+ ikπ/2)−α−1, p ∈ S, α > 0.

For proving (6.1) we notice that

eα(λ, x, y) = λαIαe(λ, x, y) = λα+ ∗ de(λ, x, y)

and that the Laplace transform of λα+ is Γ(α+ 1)p−α−1. Thus

∫ ∞

0
e−λpeα(λ, x, y)dλ = Γ(α+ 1)p−α−1V (p, x, y),

where

V (p, x, y) =

∫ ∞

0
e−λpde(λ, x, y), Re p > 0.
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Since

V (p, x, y) =
∑

e−µkpφδk(x)φ
δ
k(y), µk = 4k + 4

we have

(6.3) V

(

p+ ik
π

2
, x, y

)

= V (p, x, y).

Further the inverse Laplace transform gives

eα(λ, x, y) = b

∫ ε+i∞

ε−i∞
eλpp−α−1V (p, x, y)dp, b = Γ(α+ 1)(2πi)−1

or using (6.2), (6.3) we get for α > 0,

(6.4) eα(λ, x, y) = b

∫

S1

eλpV (p, x, y)Hα(s, p)dp,

where S1 =

(

ε− i
π

4
, ε+ i

π

4

)

.

Noticing that p → g(p) = eλpV (p, x, y)Hα(λ, p) is i
π

2
- periodic function it is

not hard to see that (6.4) implies (6.1) for some χ ∈ C∞
0 (S), χ = 1 near ε+ i0.

Now, we can write

(6.5) eα(λ, x, y) = Aλ(x, y) +Bλ(x, y),

where

Aλ(x, y) = b

∫

S
eλpV (p, x, y)p−α−1χ(p)dp,

Bλ(x, y) = b

∫

S
eλpV (p, x, y)hα(λ, p)χ(p)dp

and the function hα(λ, p) has no singularities on S. Further let the function f(x) ∈
C∞

0 (0,∞) and consider the formula
∫ ∞

0
eα(λ, x, y)f(x)dx = b

∫

eλpHα(λ, p)χ(p)

(∫ ∞

0
V (p, x, y)f(x)dx

)

dp.

We want to take limit as ε→ 0. To this end we write

I(λ, y) =

∫ ∞

0
Aλ(x, y)f(x)dx = b

∫

eiλtV (it, y)(it + 0)−α−1iχ(t)dt,

where χ(t) ∈ C∞
0

(

−π
2
,
π

2

)

, χ(t) = 1, |t| < γ for some γ > 0 and V (it, y) =
∫ ∞

0
V (it, x, y)f(x)dx is a smooth function. Since in the sense of distributions

(

(it+ 0)−α−1, ϕ(t)
)

= lim
ε1→0

C1

∫ ∫

e−ε1η
2−itη2ϕ(t)η2αdtdη, η ∈ R2,
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where

ϕ(t) = ibeiλtV (it, y)χ(t) and C1 =
1

πΓ(α+ 1)
we get

I(λ, y) = lim
ε1→0

ibC1

∫

eiλtV (it, y)e−iη
2t−ε1η2χ(t)dtdη.

To represent V (it, y) we shall use the generating function 1.1 46 [10]:

V (p, x, y) = (xy)1/2e2p(δ−1)(sinh 2p)−1e
−
(

x2+y2

2

)

coth 2p
i−δJδ

(

ixy

sinh 2p

)

.

Using the formula (1), p. 74, (6), p. 75 and 3, 4, p. 168 from [10] we can write

(6.6) Jδ(z) = z−1/2(eizC+
δ f(−z) + e−izC−

δ f(z)) if δ ≥ −1

2
,

where

f(z) =



















1

2

(

2

π

)
1
2 1

Γ(δ + 1/2)

∫ ∞

0
e−uuδ−

1
2

(

1 − iu

2z

)δ− 1
2

du, δ > −1

2

1

2

(

2

π

) 1
2

, δ = −1

2

is a holomorphic function for Re z 6= 0. Here C+
δ = e∓i

π
2 (δ+ 1

2).

Note also the property for f(t, u) = f(1/usin 2t),

(6.7) ∂kt f(t, u)| ≤ Ck uniformly in u ∈ (0, c).

Therefore

(6.8) V (p, x, y) = (sinh 2p)−1/2e−
(x2+y2)

2 coth 2p(exy/sinh 2pa(p, xy)+

+Cδe
−xy/sinh 2pa(p,−xy)),

where Cδ = e−
iπ
2 (δ+ 1

2)C+
δ and a(p, x, y) = e2p(δ−1)f

(

ixy

sinh 2p

)

.

Now, since −1

2
(x2 +y2)coth 2p+

xy

sinh 2p
= −(x− y)2

4p
+ s(p, x, y), s(0, x, y) = 0

and s has no singularities as |Im p| < π

2
we get

V (p, x, y) =

= (sinh 2p)−1/2
(

e−(x−y)2/4pb(p, x, y) +Cδe
−(x+y)2/4pb(p, x,−y)

)
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where b(p, x, y) = es(p,x,y)a(p, xy), b(0, x, y) = (2π)−1/2.

Now using the equality

lim
ε2→0

∫

e−iξ
2t+i(x−y)ξ−ε2ξ2 dξ

2π
=

{

(4πit)−1/2e−
i(x−y)2

4t , t 6= 0
δ(x− y), t = 0

we obtain in D′(R+)

V (it, x, y = lim
ε2→0

[G(t, x, y, ε2) + CδG(t, x,−y, ε2)],

where

G(t, x, y, ε2) =

(

sin 2t

2t

)−1/2

(2π)−1/2b(it, x, y)

∫

e−iξ
2+i(x−y)ξ−ε2ξ2dξ.

Hence

(6.9) I(λ, y) = J(λ, y) + CδJ(λ,−y),

where

J(λ, y) = lim
ε2→0

∫

e−ε1η
2+iλt−iη2tg1(t, η, x, y)×

× lim
ε2→0

∫ ∞

0
f(x)

(∫

e−iξ
2t+i(x−y)ξ−ε2ξ2dξ

)

dxdtdη

and

g1(t, η, x, y) = b(it, x, y)

(

sin 2t

2t

)−1/2

(2π)−1/2 1

2π2
χ(it)η2α.

Since f(x) ∈ C∞
0 (0,∞) and h(ξ) =

∫ ∞

0
f(x)eixξdx is rapidly decreasing, the integral

hε2(t) =

∫

e−iξ
2t−iyξ−ε2ξ2h(ξ)dξ is absolutely convergent, and |hε2(t)| ≤

∫

|h(ξ)|dξ.
Hence the Lebesgue theorem gives

J(λ, y) = lim
ε1→0
ε2→0

G(λ, y, ε1, ε2),

where

G(λ, y, ε1, ε2) =

∫ ∞

0

[∫

eiλt−iξ
2t−iη2t+i(x−y)ξ−ε1η2−ε2ξ2g1(t, η, x, y)dtdξdη

]

f(x)dx
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or

J(λ, y) = λα+3/2
[∫

eiλψg(ξ, η)g1(t, η, x, y)dtdξdη

]

f(x)dx+

+ lim
ε1→0
ε2→0

∫ ∞

0
Iε1ε2(λ, x, y)f(x)dx,

where

Iε1ε2(λ, x, y) = λα+3/2
∫

eiλψε1ε2g1(t, η, x, y)(1 − g(ξ, η))dtdξdη,

0 < a ≤ x ≤ b, 0 < c ≤ y ≤ d, supp f ⊂ [a, b],

ψε1ε2 = (1 − ξ2 − η2)t+ λ−1/2(x− y)ξ − ε1η
2 − ε2η

2, ψ = ψ0,0

and g(ξ, η) is a cutoff function .

In the last integral we can integrate by parts. Namely, since |∂tψε1ε2 | > C(ξ2 +

η2) for ξ2 + η2 > C1, then

|Iε1ε2(λ, x, y)| ≤ λ−N+α+3/2
∫

|∂Nt g1(t, η, x, y)|(ξ2 + η2)−N (1 − g(ξ, η))dtdξdη.

Using (6.7) we get |∂Nt g1(t, η, x, y)| ≤ CN . Hence,

|Iε1ε2(λ, x, y)| ≤ CNλ
−N+α+3/2 if a ≤ x ≤ b, 0 < c ≤ y ≤ d.

Finally we see that

(6.10) J(λ, y) = λα+3/2J1(λ, y) +O(λ−∞),

where

(6.11) J1(λ, y) =

∫

eiλψ1g(ξ, η)g1(t, η, x, y)dtdξdη

and

(6.12) ψ1(t, ξ, η, x, y) = (1 − ξ2 − η2)t+ λ−1/2(x− y)ξ.

The second term in (6.5), Bλ(x, y), can by treated analogously. Thus (6.5), (6.10) give

the basic formula

(6.13) eα(λ, x, y) = Fα(λ, x, y) + CδFα(λ, x,−y) +O(λ−∞), δ ≥ −1

2
,

0 < a ≤ x ≤ b, 0 < c ≤ y ≤ d
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where

(6.14) Fα(λ, x, y) = λα+3/2J1(λ, y) + λ1/2J2(λ, y),

J1(λ, y) is given by (6.11), while J2(λ, y) =

∫

eiλψ2g(ξ)g2(t, x, y)dtdξ and ψ1 is the

function (6.12), while ψ2(t, ξ, x, y) = ψ1(t, ξ, 0, x, y).

Asymptotics of J1, J2. Since in polar coordinates (ξ, η) = σ(w, θ), w ∈ R1,

σ > 0, w2 + θ2 = 1, (w = cosϕ, θ1 = sinϕcosϕ1, θ2 = sinϕsinϕ1, 0 < ϕ < π,

0 < ϕ1 < 2π),

I =

∫

w2+θ2=1
ei
√
λ(x−y)wσθ2αd(w, θ) = 2π

∫

w2<1
eiλ(x−y)wσ(1 − w2)αdw,

then

(6.15) I = Cα(
√
λ|x− y|σ)−1/2−αJ1/2+α(

√
λ|x− y|σ),

Cα = (2π)3/22αΓ(α+ 1).

Therefore

J1(
√
λ|x− y|)−1/2−α

∫ ∞

0

∫

eiλ(1−σ2)tσα+3/2Jα+1/2(
√
λ|x− y|σ)q(t, σ)dtdσ,

(6.16) q(0, 1) = (2π)−3/22α+1Γ(α+ 1).

For σ ≈ 0 we can integrate by parts with respect to t, and hence we can suppose

q(t, σ) ∈ C∞
0 (R× (0,∞)). If

√
λ|x− y| > 1 we use the formula (6.6). Thus we get

(6.17)
Jα+1/2(

√
λ|x− y|σ) = (

√
λ|x− y|σ)−1/2×

×
[

e−i
√
λ(x−y)σg(

√
λ|x− y|σ) + ei

√
λ|x−y|σg(−

√
λ|x− y|σ)

]

,

where

|∂kσg(
√
λ|x− y|σ) ≤ Ck if

√
λ|x− y| > 1, 0 < C1 ≤ σ ≤ C2.

Hence

J1 = (
√
λ|x− y|)−α−1/2[K1 +K2 +O(λ−∞)],

K1(
√
λ|x− y|)−1/2

∫

eiλψiqi(t, σ, x, y)dtdσ,

ψ1 = (1 − σ2)t− |x− y|λ−1/2σ, ψ2 = (1 − σ2)t+ |x− y|λ−1/2σ,
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|∂kqi| ≤ Ck if
√
λ|x− y| > 1, (t, σ) → qi ∈ C∞

0 (R× (0,∞)).

To find the asymptotics of the integrals Ki we apply the stationary phase

method [1].

The critical points σ = 1, t± = ±1

2
|x − y|λ−1/2 are nondegenerate and the

Taylor formula gives.

(6.18) q(t±, 1) = q(0, 1) + |x− y|O(λ−1/2)

Therefore

K1 = (
√
λ|x− y|)−1/2

[

2π

λ
· 1

2
e−i

√
λ|x−y|g(

√
λ|x− y|)q(t+, 1) +O(λ−2)

]

K2 = (
√
λ|x− y|)−1/2

[

2π

λ
· 1

2
ei
√
λ|x−y|g(−

√
λ|x− y|)q(t−, 1) +O(λ−2)

]

or according to (6.16), (6.18)

(6.19) J1 = (
√
λ|x− y|)− 1

2
−α
[

dα
λ
Jα+ 1

2
(
√
λ|x− y| +O(λ−7/4))

]

if
√
λ|x− y| > 1,

where dα is given by (1.6).

Consider now the case
√
λ|x− y| < 1. Then analogously to (6.15) we get

J1 =

∫ ∞

0

∫

eiλ(1−σ2)tg(t, σ, λ)dtdσ +O(λ−∞),

where

g(t, σ, λ) =

∫

w2<1
(1 − w2)αei

√
λ(x−y)wσdwg1(t, σ),

g1(t, σ) ∈ C∞
0 (R× (0,∞)), g1(0, 1) =

1

2π2

and the method of stationary phase gives

(6.20) J1 =
1

2λπ

∫

w2<1
(1 − w2)αeiλ(x−y)wσdw +O(λ−2),

(6.21) J1(
√
λ|x− y|)−α−1/2dαλ

−1Jα+1/2(
√
λ|x− y|) +O(λ−2) if

√
λ|x− y| < 1.

By the same method of stationary phase we have

(6.22) J2(λ, x, y) = O(λ−1).
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Thus (6.14), (6.19), (6.21) and (6.22) imply

Fα(λ, x, y) = dαλ
1/2+α(

√
λ|x− y|)−1/2−αJα+1/2(

√
λ|x− y|) +R,

where

|R| ≤







C(
√
λ|x− y|)−1/2−αλα−1/4 if

√
λ|x− y| > 1

Cλα−1/2 if
√
λ|x− y| < 1.

This and (6.13), (2.1) give (2.2). Theorem (1) is completely proved.

7. Proof of Theorem 4. Starting with (6.1) and using (6.2) we can write

Eα(λ, x, y) = E1(λ, x, y) + E2(λ, x, y),

(7.1) Ei(λ, x, y) = b

∫

eλpV (p,
√
λx,

√
λy)Hα(λ, p)Ki(p)dp, i = 1, 2,

where for some γ1 > 0,

Ki ∈ C∞
0 (S), suppK1(p) ⊂ {|Im p| < γ1}, K1(p) = 1 for |Im p| < γ < γ1.

Further, analogously to the proof of Theorem 3,

E1(λ, x, y) = Aλ(x, y) +Bλ(x, y),

where

Aλ(x, y) = b

∫

eλpV (p,
√
λx,

√
λy)p−α−1K1(p)dp

and

Bλ(x, y) = b

∫

eλpV (p,
√
λx,

√
λy)hα(λ, p)K1(p)dp.

Now instead of (6.8) we shall use

V (it,
√
λx,

√
λy) = lim

ε2→0

[

G(t,
√
λx,

√
λy, ε2) + CδG(t,

√
λx,−

√
λy, ε2)

]

where

G(t, x, y, ε2) = (4π)−1/2e−
i(x2+y2)

2 sin t
∫

e−iξ
2 sin 2t

2 + i(x− y)ξ − ε2ξ
2
a(it, x, y)dξ.

Since in the sense of distributions

(isin 2t+ o)−α−1 = lim
ε1→0

Cα

∫

e−ε1η
2 − iη2 sin 2t

2 η2αdη, η ∈ R2,
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we obtain, analogously to (6.13), (6.14),

E1(λ, x, y) = F1α(λ, x, y) + CδF1α(λ, x,−y) +O(λ−∞),

where

(7.2) F1α(λ, x, y) = λα+3/2I1(λ, x, y) + λ1/2I2(λ, x, y),

I1(λ, x, y) =

∫

eiλψ(t,x,y,η,ξ)q1(t, λ, x, y)η
2αg1(ξ, η)dtdξdη,

I2(λ, x, y) =

∫

eiλψ(t,x,y,0,ξ)q2(t, λ, x, y)g1(ξ)dtdξ

and

q1(t, λ, x, y) =

(

sin 2t

2t

)−α−1

a(it, λ, x, y)(2π)α+1√πK1(it),

q2(t, λ, x, y) = hα(λ, t)a(it, λ, x, y)(2π)−3/22−1/2K1(it),

ψ(t, x, y, η, ξ) = t− (η2 + ξ2)

2
sin 2t+ (x− y)ξ − (x2 + y2)

2
sin t,

g1(ξ, η) and g1(ξ) are cutoff functions.

We can represent E2 as follows:

E2(λ, x, y) = F2α(λ, x, y) + CδF2α(λ, x,−y),

where

F2α(λ, x, y) = b

∫

eiλϕq(t, λ, x, y)dt,

(7.3) ϕ(t, y, x) = t+
(x2 + y2)

2
cot 2t− xy

sin 2t

and

q(t, λ, x, y) = (isin 2t)−1/2Hα(λ, it)iba(it, λxy)K2(it).

Note that t→ q ∈ C∞
0

(

0 < |t| < π

2

)

.

To find the uniform asymptotics of the integrals Ii (i = 1, 2) in the domain
{

(x, y) ∈ R2,
A√
λ
< x < 1 − ε, 0 <

c√
λ
≤ y <

d√
λ

}

we shall apply the method of the

stationary phase.

Asymptotics of I1. Analogously to (6.20) we have

I1 = (λ|x− y|)−1/2−α
∫ ∞

0

∫

eiλψ0σ3/2+αJ1/2+α(λ|x− y|σ)q(t, σ)dtdσ +O(λ−∞),
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where

ψ0 = t− σ2

2
sin 2t− (x2 + y2)

2
tan t, q ∈ C∞

0 (R× (0,∞)).

Let s = λ|x− y|σ. The asymptotics of J1/2+α(s) gives

(7.4) J1/2+α(s) =
2
∑

k=0

s−1/2−k(Cke
is = Cke

−is) +O(s−7/2).

Since |x− y| ≥ c|x| > cλ−1/2, then (7.2) and (7.4) imply

(7.5) I1(λ|x− y|)−1−α
2
∑

k=0

(λ|x− y|)−kMk + x−1−αO(λ−5/2−α),

where

(7.6) Mk =

∫ ∞

0

∫

eiλψσ1+α−kqk(t, σ)dtdσ, qk ∈ C∞
0 (R× (0,∞))

and

(7.7) ψ = t− σ2

2
sin 2t− (x2 + y2)

2
tant± |x− y|σ.

The critical points (ti, σi) of ψ satisfy

(7.8) detψ′′ = ±4d, d =
√

(1 − x2)(1 − y2)

(7.9) cos 2ti = xy + (−1)i+1d (i = 1, 2), t3 = −t1, t4 = −t2, σisin 2ti = ±|x− y|

and these critical points are nondegenerate for x < 1 − ε, y < 1 − ε.

Thus the method of the stationary phase gives

(7.10)
M0 = λ−1

4
∑

i=1

eλψiCi(λ, x, y) +O(λ−2), |Ci(λ, x, y)| ≤ C,

Mk = O(λ−1), k = 1, 2,

(7.11) ψi(x, y) = ψ(ti, σi) = ϕ(ti, x, y).

Then (7.5) and (7.10) imply

(7.12) I1 = λ−2−α
4
∑

i=1

eiλψi b̃1i(λ, x, y) + x−1−αO(λ−5/2−α),



Equisummability Theorems for Laguerre Series 23

(7.13) b̃1i(λ, x, y) = |x− y|−1−αCi(λ, x, y).

Asymptotics of I2. The critical points of the phase function ψ(t, x, y, 0, ξ)

satisfy (7.9), where ξisin 2ti = x− y. Therefore the stationary phase method gives

(7.14) I2 = λ−1
4
∑

i=1

eiλψi b̃2i(λ, x, y) +O(λ−2),

where

(7.15) ψi(x, y) = ψ(ti, x, y, 0, ξi)

and

(7.16) |b̃2i| ≤ C, |∂xb̃2i| ≤ C.

Now (7.2), (7.12) and (7.14) show that

(7.17) F1α(λ, x, y) = λ−1/2
4
∑

i=1

eiλψb1i(λ, x, y) + x−1−αO(λ−1),

where ψi satisfy (7.11), (7.15) and b1i according to (7.13), (7.16) satisfy (2.5). To find

the asymptotics of F2α, we first notice that the critical points ti of the phase function

ϕ(t, x, y) given by (7.3) satisfy (7.9) and ϕ′′(t, x, y) = (−1)i+14d(sin 2ti)
−1, 1 ≤ i ≤ 4.

Thus the critical points are nondegenerate and

(7.18)
F2α(λ, x, y) = λ−1/2

4
∑

i=1

eiλψb2i(λ, x, y) +O(λ−3/2),

|b2i| + |∂xb2i| ≤ C, ψi(x, y) = ϕ(ti, x, y).

Evidently (7.17) and (7.18) give (2.4).

8. Proof of Theorem 5. Starting with (6.4) and (2.1) we get formula (2.3),

where

Fα(λ, x, y) =

∫

S1

eλϕq(p, λ)dp,

ϕ(p) = p− 2−1(x2 + y2)coth p+
xy

sinh 2p
,

q(p, λ) = b(sinh 2p)−1/2Hα(λ, p)e
2p(δ−1)f

(

iλxy

sinh 2p

)

, S1 =

(

ε1 − i
π

4
, ε1 + i

π

4

)

, ε1 > 0.
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Now we can apply the same method as in [3], which gives the asymptotics (2.7).
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