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A PERTURBED ITERATIVE METHOD FOR A GENERAL

CLASS OF VARIATIONAL INEQUALITIES

Samir Adly

Communicated by A. L Dontchev

Abstract. The generalized Wiener-Hopf equation and the approximation me-
thods are used to propose a perturbed iterative method to compute the solutions
of a general class of nonlinear variational inequalities.

1. Introduction, preliminaries and formulation. The field of inequality

problems has seen a considerable development in mathematics and unilateral mechan-

ics. Particularly, the theory of variational inequalities is now a well-developed theory

in mathematics. The mechanical meaning of a variational inequality is given by the

formulation of the principle of virtual work when a monotone stress-strain or reaction-

displacement condition hold. Equally important is the study of the random equations

involving the random operators in view of their need in dealing with probabilistic mod-

els in applied sciences. Motivated by a recent work of P. Shi [20] who established the

equivalence between variational inequalities and Wiener-Hopf equation and inspired by

a random version of this work which is due to Noor and Elsanousi [14], we investigate a

general class of nonlinear variational inequalities for the deterministic case. Using the

proximal technique, we show the equivalence between such variational inequalities and
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a generalized version of the so called Wiener-Hopf equation. This equivalence, along

with the concept of epiconvergence, allows us to suggest and study a new perturbed

iterative method for solving our general problem, which consists of coupling an iterative

scheme with a data perturbation.

Let H be a real Hilbert space, whose inner product and norm are denoted by

〈·, ·〉 and | · | respectively. For a given nonlinear operator A : H → H and a given lower

semicontinuous proper and convex function ϕ : H → R ∪ {+∞}, we shall consider the

following general variational inequality:

Find u ∈ H such that

〈Au − Bu, v − u〉 ≥ ϕ(u) − ϕ(v), ∀v ∈ H,(1)

where B is a nonlinear continuous mapping on H.

We recall that the subdifferential operator ∂ϕ is defined by

(x, y) ∈ ∂ϕ ⇐⇒ ϕ(ξ) ≥ ϕ(x) + 〈y, ξ − x〉 for all ξ ∈ H.

The original problem (1) has an equivalent formulation in terms of generalized

equation:

Find u ∈ H such that

0 ∈ (A − B)u + ∂ϕ(u).(2)

Let us give some examples of problems which give raise to inequality (1) or

equivalently to (2).

(i) Let K be a nonempty closed convex subset of H. Note that if the operator B

is independent of u, that is, B(u) = f for all u ∈ H and ϕ = IK the indicator

function of the subset K, then (1) is equivalent to the following problem:

Find u ∈ K such that

〈Au − f, v − u〉 ≥ 0, ∀v ∈ K.(3)

Inequalities like (3) are known as the classical variational inequalities and have

been extensively studied in the literature (see for instance [19] and references

quoted therein).

(ii) Let K be a closed convex cone of H, and let K∗ denote its positive polar, i.e.

K∗ := {u∗ ∈ H | 〈u∗, u〉 ≥ 0 ∀u ∈ K}.
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If ϕ := IK and B is identically null, then problem (1) reduces to the so called

explicit complementarity problem given by

Find u ∈ K such that

Au ∈ K∗ and 〈Au, u〉 = 0.(4)

Such problems were introduced by Karamardian [10]. For further details we

refer, for example, to [9]. Nevertheless, such problems are encountered frequently

in several fields of applied mathematics such as for instance, mechanics, economic

equilibrium theory, elasticity theory.

(iii) Let J : H → R be a Gâteaux differentiable convex function such that ∇J(u) = Au

∀u ∈ H and B identically null. Then (1) is equivalent to the convex optimisation

problem

(J + ϕ)(u) = inf
v∈H

(J + ϕ)(v).(5)

This problem has been studied for example in [11] among others.

A large number of equilibrium problems arising in economics and transportation

sciences can be formulated as

A(PK(z)) + (z − PK(z)) = f(6)

where PK stands for the projection operator of H on the convex set K.

As quoted by S. Robinson [17] or [18] and P. Shi [20], equation (6) can be

derived from the variational inclusion

f ∈ Au + ∂IK(u),(7)

which is equivalent to problem (3). For the applications and more details of this type

of equation we refer to [22], [20] and references cited therein.

More generally, let us consider the following problem

Find z ∈ H such that

(A − B)Jϕ
λ (z) +

1

λ
(I − J

ϕ
λ )(z) = 0,(8)

where λ > 0 is a constant, J
ϕ
λ := (I + λ∂ϕ)−1 is the so called proximal mapping and I

stands for the identity operator on H.

Equation (8) is called the generalized Wiener-Hopf equation.
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Let us now give a characterization of the proximal mapping J
ϕ
λ and let us state

its nonexpansiveness property.

Lemma 1.1. [6]

(i) u = J
ϕ
λ (z) ⇐⇒ λ−1〈z − u, v − u〉 ≤ ϕ(v) − ϕ(u) ∀v ∈ H.

(ii) The proximal mapping J
ϕ
λ is nonexpansive, that is:

|Jϕ
λ (u) − J

ϕ
λ (v)| ≤ |u − v| ∀u, : v ∈ H.

We also need the following standard concepts.

Definition 1.1. An operator T : H → H is said to be:

1. strongly monotone, if there exists a constant α > 0 such that

〈Tu − Tv, u − v〉 ≥ α|u − v|2.

2. Lipschitz continuous, if there exists a constant k > 0 such that

|Tu − Tv| ≤ k|u − v|.

2. Equivalence. Using the general abstract duality principle of Attouch &

Théra [4], we show the equivalence between problem (1) and the generalized Wiener-

Hopf equation (8).

Theorem 2.1. The general variational inequality (1) has a solution u ∈ H if

and only if the generalized Wiener-Hopf equation (8) has a solution z ∈ H, where

z = u − λ(Au − Bu),(9)

and

u = J
ϕ
λ (z).(10)

P r o o f. Let us consider the equivalent formulation of problem (1):

Find u ∈ H such that

0 ∈ (A − B)(u) + ∂ϕ(u).(11)
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For λ > 0, we have

0 ∈ λ(A − B)(u) + λ∂ϕ(u).

By adding and subtracting u to equation (12), we obtain

0 ∈ −u + λ(A − B)(u) + u + λ∂ϕ(u).(12)

By setting,

Au := (−I + λ(A − B))u,

T u := (I + λ∂ϕ)(u),

equation (12) becomes,

Au + T u ∋ 0.

By applying the general abstract duality principle of H. Attouch and M. Théra [4], we

get

z + AT −1(z) ∋ 0, with z ∈ T u.

Noticing that T −1(z) = (I + λ∂ϕ)−1(z) = J
ϕ
λ (z) we finally obtain

z + (−I + λ(A − B))Jϕ
λ (z) = 0,

or equivalently,

(A − B)Jϕ
λ (z) +

1

λ
(I − J

ϕ
λ )(z) = 0.(13)

Since z ∈ T (u), we have

u = J
ϕ
λ (z).

Which completes the proof. �

Remark 2.1. This theorem generalized results obtained by P. Shi [19] and

A. M. Noor [13] in the case where ϕ = IK and B(u) = f for all u ∈ H.

3. A perturbed iterative method. The equivalence established above plays

an important role from numerical and approximation point of views and will be used

in what follows to obtain algorithms for solving the general variational inequality (1).

Adopting the point of view of variational convergence, we perturb problem (1),

at each iteration n ∈ N, by replacing the original function ϕ by an approximate function

ϕn to get a new problem

Find un ∈ H such that

〈Aun − Bun, v − un〉 ≥ ϕn(un) − ϕn(v), ∀v ∈ H.(14)
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We assume that the sequence {ϕn | n ∈ N} of lower semicontinuous convex and proper

functions converges to ϕ in the sense of Mosco, that is

∀u ∈ H, ∀{un|n ∈ N} such that un
w
→ u, then ϕ(u) ≤ lim inf

n→+∞
ϕn(un),

∀u ∈ H, ∃{un|n ∈ N} such that un
s
→ u and ϕ(u) ≥ lim sup

n→+∞

ϕn(un).

We adopt the notation ϕn M
→ ϕ, to denote the Mosco-epiconvergence of ϕn to

ϕ, and we recall [3] that if ϕn M
→ ϕ, then

J
ϕn

λ (u)
s
→ J

ϕ
λ (u) for all λ > 0 and u ∈ H.

For more details concerning the Mosco-epiconvergence we refer to the book of H.

Attouch [3].

We illustrate the perturbation scheme (14) by the following examples.

Example 3.1. Penalty for Constrained Variational Inequalities. Let

us consider the problem (3) with K := {u ∈ H | h(u) ≤ 0}, where h : H → R is a

differentiable and convex function. Let p : H → R be a penalty function, that is p is

lower semicontinuous and convex function satisfying

p(u) ≥ 0 ∀u ∈ H and p(u) = 0 ⇐⇒ u ∈ K.

Consider the sequence of functions {ϕn | n ∈ N} defined by

ϕn(u) = rnp(u) ∀u ∈ H.

It has been shown [5] that, if 0 < rn < rn+1 and rn → +∞, then ϕn M
→ ϕ.

In this case, the perturbed problem (14) becomes the penalty variational in-

equality with parameter rn. We note that such problems have been studied in [7].

Example 3.2. Nonlinear Complementarity Problem and Galerkin

Method. Let us consider the explicit complementarity problem (4).

If K is a Galerkin cone, that is there exists a countable family of convex subcones

{Kn|n ∈ N} of K such that:

(i) Kn is locally compact for every n ∈ N

(ii) if n ≤ m then Kn ⊆ Km

(iii) K =
⋃

n≥0

Kn,
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then by taking the perturbed function ϕn := IKn
, we have ϕn M

→ ϕ = IK . Such

approximation scheme has been studied in [9].

One can see that by using this notion of perturbation, the approximate varia-

tional inequality may have quite different computational properties.

Coupling formulations (9) and (10) with the concept of epi-convergence, we

suggest the following perturbed iterative algorithm for solving our general problem (1).

The General Algorithm:

(i) At iteration n = 0, start with some initial point z0 ∈ H.

(ii) At iteration n, compute the new point zn+1 by the iterative scheme:

un = J
ϕn

λ (zn),(15)

zn+1 = un − λ(Aun − Bun).(16)

(iii) If |zn+1 − zn| ≤ ε, for a given ε > 0, then stop. Otherwise, repeat (ii).

Remark 3.1. If the operator A is linear and A−1 exists (B(u) = f for all

u ∈ H), then the generalized Wiener-Hopf equation (8) becomes:

z = (I − λ−1A−1)(I − J
ϕ
λ )(z) + A−1f.(17)

Indeed by (8), we have

λAJ
ϕ
λ z = J

ϕ
λ (z) − z + λf,

which is equivalent to

J
ϕ
λ (z) = λ−1A−1J

ϕ
λ (z) − λ−1A−1z + A−1f.

Hence

z = (I − λ−1A−1)(I − J
ϕ
λ )(z) + A−1f.

Using the fixed point formulation (17), we can replace step (ii) in the general algorithm

by the following:

(ii)′ zn+1 := (I − λ−1A−1)(I − J
ϕn

λ )(zn) + A−1f.

Pitonyak, Shi and Shillor [21] have presented some numerical examples for solu-

tions to obstacle problems by using algorithm (ii)′ with ϕn = IK . The results obtained

are encouraging.
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Remark 3.2. In the case of the convex optimization problem (5), the iteration

procedure takes the form:







un = argmin

{

ϕn +
1

2λ
| · −zn|

2

}

zn+1 = un − λ∇J(un)

As a particular case, if we set ϕn = IKn where {Kn |n ∈ N} is a family of closed convex

subset approximating the nonempty closed convex subset K. Then the iterative scheme

reduces to
{

un = PKn(zn)
zn+1 = un − λ∇J(un)

Now, let us state the convergence result for the general algorithm.

Theorem 3.1. Let A : H → H be a strongly monotone and Lipschitz

continuous operator. Assume that ϕn M
→ ϕ and B is Lipschitz continuous. Then the

sequence {zn|n ∈ N} generated by the general algorithm converges strongly to the exact

solution z of (8), for

λ <
2(α − µ)

β2 − µ2
and µ < α,

where α is the strong monotonicity constant of A and β, µ are the Lipschitz constants

of A and B respectively.

P r o o f. Let z ∈ H satisfy the generalized Wiener-Hopf equation (8). From (9)

and (15), we get

|zn+1 − z| = |un − u − λ(Aun − Bun) + λ(Au − Bu)|

= |un − u − λ(Aun − Au) + λ(Bun − Bu)|

≤ |un − u − λ(Aun − Au)| + λ|Bun − Bu|.

Since A is strongly monotone and Lipshitz continuous, we have

|un − u − λ(Aun − Au)| ≤
√

1 − 2λα + λ2β2|un − u|.

By setting

t(λ) :=
√

1 − 2λα + λ2β2 + λµ,

where µ is the Lipschitz constant of B, we have

|zn+1 − z| ≤ t(λ)|un − u|.(18)
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From (10) and (15), we get

|un − u| = |Jϕn

λ (zn) − J
ϕ
λ (z)|,

By introducing the term J
ϕn

λ (z), we get

|un − u| ≤ |Jϕn

λ (zn) − J
ϕn

λ (z)| + |Jϕn

λ (z) − J
ϕ
λ (z)|.

Since J
ϕn

λ is nonexpansive, we obtain

|un − u| ≤ |zn − z| + εn,

where εn := |Jϕn

λ (z) − J
ϕ
λ (z)| which converges to 0, since ϕn M

→ ϕ.

Hence

|un − u| ≤ |zn − z| + εn,

which combined with (18), yields

|zn+1 − z| ≤ t(λ)|zn − z| + t(λ)εn.

Thus

|zn+1 − z| ≤ θ|zn − z| + ε′n,(19)

where θ := t(λ) and ε′n := t(λ)εn.

The condition on the parameter λ implies that θ < 1. From (19), we derive

|zn+1 − z| ≤ θn+1|z − z0| +
n

∑

j=1

θjε′n+1−j.

The required result follows from [15], page 399. �

Remark 3.3. We note that when B is identically null, then the condition on

the parameter λ in Theorem 3.1 reduces to

λ <
2α

β2
,

where α and β are respectively the strong monotonicity and the Lipschitz constants of

the operator A.

4. A weak convergence result. In this section, we consider the following

problem

Find u ∈ H such that

〈Au − f, v − u〉 ≥ ϕ(u) − ϕ(v), ∀v ∈ H.(20)
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Using Theorem 2.1, problem (20) is equivalente to

AJ
ϕ
λ (z) +

1

λ
(I − J

ϕ
λ )(z) = f.(21)

We introduce the following operator T defined by

T (z) := (I − λA)Jϕ
λ (z) + λf.

We note that fixed points of the operator T are solutions of the equation (21).

In the following definition, we introduce the notion of co-coercive mappings as

defined by Tseng [23] and also studied by Mataoui [12].

Definition 4.1. The operator A : H → H is co-coercive if there exists Λ > 0

such that

〈Au − Av, u − v〉 ≥
1

Λ
|Au − Av|2,

for all u, v ∈ H.

Remark 4.1.

(i) If A is strongly monotone with modulus α and Lipschitz continuous with constant

β, then A is co-coercive with modulus Λ =
β2

α
.

(ii) A co-coercive operator is monotone and Lipschitz.

The following lemma will be usefull

Lemma 4.1. If the operator A is co-coercive with modulus Λ > 0 and λ <
2

Λ
,

then the operator

T (z) := (I − λA)Jϕ
λ (z) + λf

is nonexpansive.

P r o o f. Let z1 and z2 in H, we have

|Tz1 − Tz2|
2 = |Jϕ

λ z1 − J
ϕ
λ z2 − λ(AJ

ϕ
λ z1 − AJ

ϕ
λ z2)|

2

≤ |Jϕ
λ z1 − J

ϕ
λ z2|

2 − λ(
2

Λ
− λ)|AJ

ϕ
λ z1 − AJ

ϕ
λ z2|

2.

Since the proximal mapping J
ϕ
λ is nonexpansive and λ <

2

Λ
, the result of the Lemma

follows. �
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Lemma 4.2. [Browder] Let H be a Hilbert space and C a closed convex and

bounded subset of H. Assume that an operator T : C → C is nonexpansive. For any

s ∈ |0, 1[ and z0 ∈ H, define the following iterative method

zn+1 = szn + (1 − s)Tzn.

Then the sequence {zn |n ∈ N} converges weakly to a fixed point of T and |zn+1−zn| → 0

as n → +∞.

We suggest the following iterative algorithm with relaxation:

ALG2:

(i) At iteration n = 0, start with z0 ∈ H.

(ii) For s ∈]0, 1[, zn+1 is given by

zn+1 = szn + (1 − s)(I − λA)Jϕ
λ (zn) + (1 − s)λf.

(iii) If |zn+1 − zn| ≤ ε, for a given ε > 0, then stop. Otherwise, repeat (ii).

We have the following convergence result:

Theorem 4.3. Suppose that (20) has a solution. If the operator A is co-

coercive with modulus Λ > 0 and λ <
2

Λ
. Then the sequence {zn | n ∈ N} generated by

the algorithm ALG2 converges weakly to a solution z∗ of the equation (21).

P r o o f. Let u be a solution of (20). By using Theorem 2.1

z = u − λAu − λf,

is a solution of the equation (21).

Set

C := {v ∈ H : |v − z| ≤ |z0 − z|}.

By Lemma 4.1 T is nonexpansive and thus T maps C into C.

Lemma 4.2 yields that the sequence {zn} weakly converges to a fixed point z∗ of T ,

which is a solution of (21). This completes the proof. �

Example 4.1. Let us consider the following boundary value problem with

discontinuous nonlinearities:

(P)















Find u ∈ H2(Ω) such that

0 ∈ −∆u(x) + ∂J(x, u(x)) a.e. in Ω

u = 0 on ∂Ω



80 Samir Adly

Here Ω is an open subset of R
N with boundary ∂Ω sufficiently smooth and J : Ω×R → R

is a continuous convex and subquadratic function with respect to the second variable,

i.e.

J(x, s) ≤
a

2
|s|2 + b, ∀(x, s) ∈ Ω × R, a < λ1,(22)

where λ1 is the first eigenvalue of the homogeneous Dirichlet problem for the operator

−∆.

It is easy to see that (P) can be rewritten in the form (20) with H = H1
0 (Ω) and

〈Au, v〉 =

∫

Ω

∇u∇vdx.

We choose λ >
1

2α
where α is determinated by the Poincaré’s inequality.

In this case, the iterative algorithm ALG2 becomes

zn+1 = szn + (1 − s)(I − λ−1A−1)(I − (∂J)λ)(zn),(23)

where

(∂J)λ(u) = argmin {J(·, v) +
1

2λ
‖u − v‖2

H}.

From a computational point of view, the preceding algorithm (23) is not expensive

since at each step, it only requires the calculus of the operator A−1 which is given by

the Green representation

A−1w(x) =

∫

Ω

G(x, y)w(y)dy, w ∈ L2(Ω).

This can be easily achieved if we perform previously a tabulation of the function (∂J)λ.
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