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A RANDOM EVOLUTION INCLUSION

OF SUBDIFFERENTIAL TYPE IN HILBERT SPACES

D. Kravvaritis, G. Pantelidis

Communicated by N. M. Yanev

Abstract. In this paper we study a nonlinear evolution inclusion of subdiffe-
rential type in Hilbert spaces. The perturbation term is Hausdorff continuous in
the state variable and has closed but not necessarily convex values. Our result
is a stochastic generalization of an existence theorem proved by Kravvaritis and
Papageorgiou in [6].

1. Introduction. In this paper we study a nonlinear random multivalued

evolution inclusion of the form

(∗)

{

−ẋ(ω, t) ∈ ∂ϕ(ω, x(ω, t)) + F (ω, t, x(ω, t))
x(ω, 0) = x0(ω)

}

,

where F (ω, t, x) is a random multivalued perturbation term with closed but not neces-

sarily convex values.

Random differential inclusions have been studied by many authors (cf. Itoh [5],

Papageorgiou [10], Kravvaritis and Papageorgiou [7], Nowak [9] and their references).

Our result generalizes to the random case corresponding deterministic result proved by

Kravvaritis and Papageorgiou in [6].
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2. Mathematical preliminaries. Let (Ω,Σ, µ) be a complete probability

space and H a separable Hilbert space. By Pf (H) we will denote the nonempty closed

subsets of H. A multifunction F : Ω → Pf (H) is said to be measurable if, for all x ∈ H,

ω → d(x, F (ω)) = inf{‖z − x‖, z ∈ F (ω)}

is measurable. By S2
F , we will denote the set of measurable selectors of F (·), that

belong in the Lebesgue-Bochner space L2(H), i.e.,

S2
F = {f ∈ L2(H) : f(ω) ∈ F (ω) µ − a.e.}.

It is easy to check that this set is closed and it is nonempty if and only if inf{‖x‖ :

x ∈ F (ω)} ∈ L2.

A function ϕ : Ω × H → R = R ∪ {+∞} is a normal integrand if and only if

(ω, x) → ϕ(ω, x) is measurable and, for all ω ∈ Ω, x → ϕ(ω, x) is l.s.c. and proper. If,

in addition, ϕ(ω, ·) is convex, then we say that ϕ is a convex normal integrand. Recall

that for a proper, convex function ϕ : H → R the subdifferential at x is defined by

∂ϕ(x) = {y ∈ H : ϕ(z) − ϕ(x) ≥ (y, z − x) for all z ∈ H}.

We say that ϕ(·) is of compact type, if for every λ ∈ R+, the level set {x ∈ H :

‖x‖2 + ϕ(x) ≤ λ} is compact.

The generalized Hausdorff metric on Pf (H), is defined by

h(A,B) = max

[

sup
a∈A

d(a,B), sup
b∈B

d(b,A)

]

.

We say that F : H → Pf (H) is Hausdorff continuous (h-continuous), if it is continuous

from H into the metric space (Pf (H), h).

3. The main result. Let T = [0, b] be a bounded, closed interval in R+.

Consider the following initial value problem

(∗∗)

{

−ẋ(t) ∈ ∂ϕ(x(t)) + f(t)
x(0) = x0

}

where f ∈ L2(T,H) and x0 ∈ D(∂ϕ). A continuous function x : T → H is a strong

solution of (∗∗) if x(0) = x0, x(·) is absolutely continuous on every compact subset of

(0, b) and

x(t) ∈ D(∂ϕ) and ẋ(t) ∈ ∂ϕ(x(t)) + f(t) a.e. on (0, b).
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It is known [3] that (∗∗) has a unique strong solution. By a random strong

solution of (∗) we understand a stochastic process x : Ω × T → H such that for every

ω ∈ Ω, x(ω, ·) is a strong solution of

−ẋ(ω, t) ∈ ∂ϕ(ω, x(ω, t)) + f(ω, t)

x(ω, 0) = x0(ω)

for some f(ω, ·) ∈ S2
F (ω,·,x(ω,·)).

We will make the following hypotheses:

H(ϕ) : ϕ : Ω×H → R is a convex normal integrand, which is of compact type in the

x-variable and the multifunction

D(ω) = D(∂ϕ(ω, ·)) = {x ∈ H : ∂ϕ(ω, x) 6= Ø}

has a bounded selector.

H(F ) : F : Ω × T × H → Pf (H) is a multifunction such that

(i) for all x ∈ H, (ω, t) → F (ω, t, x) is measurable,

(ii) for all (ω, t) ∈ Ω × T , x → F (ω, t, x) is h-continuous,

(iii) |F (ω, t, x)| = sup{‖z‖ : z ∈ F (ω, t, x)} ≤ a(t)+ b(t)‖x‖ a.e. for every ω ∈ Ω,

with a(·), b(·) ∈ L2
+.

H0 : x0 : Ω → H is measurable such that

sup{‖x0(ω)‖, ω ∈ Ω} < ∞ and sup{ϕ(ω, x0(ω)), ω ∈ Ω} < ∞.

Theorem. If the hypotheses H(ϕ), H(F ) and H0 hold, then (∗) admits a

random strong solution.

P r o o f. Let z(·) be a bounded selector of D(·) and let u(ω) ∈ ∂ϕ(ω, z(ω)). If

we set

ϕ̂(ω, x) = ϕ(ω, x) − ϕ(ω, z(ω)) − (u(ω), x − z(ω)),

then (∗) is equivalent to

−ẋ(ω, t) ∈ ∂ϕ̂(ω, x(ω, t)) + F (ω, t, x(ω, t)) + u(ω)

x(ω, 0) = x0(ω).
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So there is no loss of generality in assuming that

min{ϕ(ω, x) : x ∈ H} = ϕ(ω, z(ω)) = 0.

Therefore

(z(ω), 0) ∈ Gr ∂ϕ(ω, ·) for all ω ∈ Ω.

First let us obtain an a priori bound for the solutions of (∗). So let x(·, ·) be a random

strong solution. By definition then there exists h(ω, ·) ∈ S2
F (ω,·,x(ω,·)) such that

−ẋ(ω, t) ∈ ∂ϕ(ω, x(ω, t)) + h(ω, t)

x(ω, 0) = x0(ω).

From Lemma 3.1 (p. 64) of Brezis [3] we know that

‖x(ω, t) − z(ω)‖2 ≤ ‖x0(ω) − z(ω)‖2 + 2

∫ t

0
‖h(ω, s)‖.‖x(ω, s) − z(ω)‖ds.

Invoking Lemma A.5, p. 157, of [3], we get

‖x(ω, t) − z(ω)‖ ≤ ‖x0(ω) − z(ω)‖ +

∫ t

0
‖h(ω, s)‖ds for all ω ∈ Ω, t ∈ T.

Now, using the growth hypothesis H(F ) (iii) we have

‖x(ω, t) − z(ω)‖ ≤ ‖x0(ω) − z(ω)‖ +

∫ t

0
[a(s) + b(s)‖x(ω, s)‖] ds,

and by Gronwall’s inequality we get

‖x(ω, t)‖ ≤ L · exp ‖b(·)‖1 = M for all ω ∈ Ω, t ∈ T,

where

L = sup{‖x0(ω) − z(ω)‖ + ‖z(ω)‖ : ω ∈ Ω} + ‖a(·)‖1.

Then consider the multifunction F̂ : Ω × T × H → Pf (H) defined by

F̂ (ω, t, x) =















F (ω, t, x) if ‖x‖ ≤ M

F

(

ω, t,
Mx

‖x‖

)

if ‖x‖ > M.

We see that

F̂ (ω, t, x) = F (ω, t, pM (x)),
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where pM(·) is the M -radial retraction for which we know that it is continuous. Hence

(ω, t, x) → F̂ (ω, t, x) is measurable. Furthermore note that

|F̂ (ω, t, x)| ≤ a(t) + Mb(t) = γ(t), γ(·) ∈ L2(T ).

We set

B(γ) = {h ∈ L2(T,H) : ‖h(t)‖ ≤ γ(t) a.e.}.

Let now q : Ω × L2(T,H) → C(T,H) be the map that to each (ω, h) ∈ Ω × L2(T,H)

assigns the unique solution of

(∗)′ −ẋ(t) ∈ ∂ϕ(ω, x(t)) + h(t) a.e., x(0) = x0(ω).

We claim that q is a Caratheodory map. Fix h ∈ L2(T,H). From Lemma 2.1 of [2] we

know that

q(ω, h) = lim
λ→0

qλ(ω, h),

where qλ(ω, h) is the unique solution of

ẋλ(t) = ∇ϕλ(ω, xλ(t)) + h(t), xλ(0) = x0(ω)

with

ϕλ(ω, x) = inf

[

1

2λ
‖x − z‖2 + ϕ(ω, z) : z ∈ H

]

.

Since ∇ϕλ(ω, x) is measurable in ω (see Theorem 2.3 of [1]), qλ(·, h) is also measurable

and so q(·, h) is measurable. From Lemma 3.1 of Brezis [3], we know that, for each

ω ∈ Ω, q(ω, ·) is continuous from L2(T,H) into C(T,H). So q(·, ·) is a Caratheodory

map. Let

W = {q(ω, h) = x : strong solution of (∗)′, ω ∈ Ω, h ∈ B(γ)}.

Then for any x(·) ∈ W and t, t′ ∈ T , t < t′, we have

‖x(t′) − x(t)‖=

∥

∥

∥

∥

∥

∫ t′

t
ẋ(s)ds

∥

∥

∥

∥

∥

≤

∫ t′

t
‖ẋ(s)‖ds =

∫ b

0
‖X[t,t′](s)ẋ(s)‖ds

≤

[

∫ b

0
‖X[t,t′](s)‖

2ds

]
1

2

[

∫ b

0
‖ẋ(s)‖2ds

]
1

2

.

From the estimates provided by Theorem 3.6 of Brezis [3], we know that

[

∫ b

0
‖ẋ(s)‖2ds

]
1

2

≤ ‖h‖2+[ϕ(ω, x0(ω))]
1

2 ≤ ‖γ‖2+sup
{

[ϕ(ω, x0(ω))]
1

2 : ω ∈ Ω
}

= M1.



122 D. Kravvaritis, G. Pantelidis

So finally we have

‖x(t′) − x(t)‖ ≤ M1(t
′ − t)

1

2 ,

which implies that W is equicontinuous.

Also again from Theorem 3.6 of [3] we know that

‖ẋ(t)‖2 +
d

dt
ϕ(ω, x(t)) = (h(t), ẋ(t)) a.e.,

so

ϕ(ω, x(t))≤ϕ(ω, x0(ω)) +

∫ t

0
(h(s), ẋ(s))ds ≤ ϕ(ω, x0(ω)) + ‖h‖2‖ẋ‖2

≤sup{ϕ(ω, x0(ω)) : ω ∈ Ω} + ‖γ‖2M1 = M2

⇒ ϕ(ω, x(t)) ≤ M2 for all t ∈ T, ω ∈ Ω and all x(·) ∈ W.

Recalling that ϕ(ω, ·) is of compact type, we deduce that W (t) is compact for all

t ∈ T . Invoking the Arzela-Ascoli theorem, we conclude that W is relatively compact

in C(T,H). As in the proof of Theorem 3.1 in [6] we can prove that W is closed, hence

compact in C(T,H). It then follows that Ŵ = convW is compact in C(T,H).

Now consider the multifunction R : Ω × Ŵ → Pf (L2(T,H)) defined by

R(ω, y) = S2
F (ω,·,y(·)).

For each y ∈ Ŵ , the multifunction ω → R(ω, y) is measurable. Indeed, since (ω, t) →

F (ω, t, x) is measurable and x → F (ω, t, x) is h-continuous F (·, ·, ·) is jointly measurable

([11, Theorem 3.3]). Then for every x ∈ H,

(ω, t, y) → d(x, F (ω, t, y))

is measurable. Since the distance function is continuous in x, for each h ∈ L2(T,H),

(ω, t) → d(h(t), F (ω, t, y(t)))

is measurable. From Fubini’s theorem we get that

ω →

∫ b

0
d(h(t), F (ω, t, y(t)))dt = d(h, S2

F (ω,·,y(·)))

is measurable, which implies that ω → R(ω, y) is measurable.

Next consider the multifunction G : Ω → Pf (C(Ŵ , L2(T,H))) defined by

G(ω) = {r ∈ C(Ŵ , L2(T,H)) : r(y) ∈ R(ω, y) for all y ∈ Ŵ}.
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From Fryszkowski’s selection theorem [4], we know that, for all ω ∈ Ω, G(ω) 6= Ø. We

have

G(ω) = {r ∈ C(Ŵ , L2(T,H)) : d(r(y), R(ω, y)) = 0 for all y ∈ Ŵ}.

Since x → F (ω, t, x) is h-continuous, the multifunction y → R(ω, y) is also h-continuous.

It then follows that y → d(r(y), R(ω, y)) is continuous. Thus if {yn} is dense in Ŵ ,

then

G(ω) =
∞
⋂

n=1

{r ∈ C(Ŵ , L2(T,H)) : d(r(yn), R(ω, yn)) = 0}.

Now, for fixed y ∈ Ŵ , (ω, r) → d(r(y), R(ω, y)) is a Caratheodory map. So the mul-

tifunction ω → {r ∈ C(Ŵ , L2(T,H)) : d(r(y), R(ω, y)) = 0} is measurable, which in

turn implies that G is measurable. By the selection theorem of Kuratowski and Ryll-

Nardzewski [8], there exists r : Ω → C(Ŵ , L2(T,H)) measurable such that r(ω) ∈ G(ω)

for all ω ∈ Ω. Observe that, for every ω ∈ Ω, q(ω, r(ω)(·)) : Ŵ → Ŵ . Apply-

ing Schauder’s fixed point theorem, we get x ∈ W such that q(ω, r(ω)(x)) = x. Set

S(ω) = {x ∈ Ŵ : q(ω, r(ω)(x)) = x}. Then there exists s : Ω → C(T,H) measurable

such that s(ω) ∈ S(ω) for all ω ∈ Ω. It then follows that

x(ω, t) = q(ω, r(ω)(s(ω)))(t)

is the desired random solution of (∗).
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