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ON UNIFORMLY CONVEX AND UNIFORMLY KADEC-KLEE

RENORMINGS

Gilles Lancien

Communicated by G. Godefroy

Abstract. We give a new construction of uniformly convex norms with a power
type modulus on super-reflexive spaces based on the notion of dentability index.
Furthermore, we prove that if the Szlenk index of a Banach space is less than
or equal to ω (first infinite ordinal) then there is an equivalent weak∗ lower semi-
continuous positively homogeneous functional on X∗ satisfying the uniform Kadec-
Klee Property for the weak∗-topology (UKK∗). Then we solve the UKK or UKK∗

renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact
space.

1. Introduction–notations. Throughout this paper, X will denote a real

Banach space, BX its unit ball and X∗ its dual. We will first define the three slicing

indices associated to X that we will study in this paper.

Dentability index, δ(X): Let C be a closed bounded subset of X. We call

a slice of C any set S of the form S = {x ∈ C : x∗(x) > α}, where x∗ belongs to X∗

and α is real.

For ε > 0, C ′
ε = {x ∈ C such that any slice of C containing x is of diameter > ε}.

For an ordinal α, Fα
ε is defined inductively by:
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F 0
ε = BX

Fα+1
ε = (Fα

ε )′ε

Fα
ε =

⋂

β<α
F β

ε , if α is a limit ordinal.

Then

δ(X, ε) =

{

inf{α : Fα
ε = Ø} if it exists

∞ otherwise

And δ(X) = sup
ε>0

δ(X, ε).

Weak-Szlenk index, Szw(X): Let C be a closed bounded subset of X. For

ε > 0, C
〈′〉
ε = {x ∈ C such that any weak neighborhood of x in C is of diameter > ε}.

For an ordinal α, F
〈α〉
ε is defined inductively by:

F
〈0〉
ε = BX

F
〈α+1〉
ε = (F

〈α〉
ε )

〈′〉
ε

F
〈α〉
ε =

⋂

β<α
F

〈β〉
ε , if α is a limit ordinal.

Then

Szw(X, ε) =

{

inf{α : F
〈α〉
ε = Ø} if it exists

∞ otherwise

And Szw(X) = sup
ε>0

Szw(X, ε).

Szlenk index, Sz(X): Let C be a closed bounded subset of X∗. For ε > 0,

C
[′]
ε = {x∗ ∈ C such that for any weak*-neighborhood V of x∗,diam(V ∩ C) > ε}.

We denote:

K
[0]
ε = BX∗

K
[α+1]
ε = (K

[α]
ε )

[′]
ε

K
[α]
ε =

⋂

β<α
K

[β]
ε , if α is a limit ordinal.

Sz(X, ε) =

{

inf{α : K
[α]
ε = Ø} if it exists

∞ otherwise

Sz(X) = sup
ε>0

Sz(X, ε).

In [L1] and [L2] it is shown that if δ(X) is countable then X admits an equiv-

alent locally uniformly convex norm and that if Sz(X) is countable then X admits an

equivalent norm whose dual norm is locally uniformly convex. In this paper we are in-

terested in the Banach spaces for which these slicings proceed even faster, namely when

they stop before ω (the first infinite ordinal). More precisely, we try to know if these
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conditions imply the existence of equivalent norms enjoying some uniform properties

of convexity.

In section 2 we notice that the renorming theorem of P. Enflo for super-reflexive

spaces ([E]) implies that the condition δ(X) ≤ ω is equivalent to X super-reflexive.

Then we show how the geometrical construction introduced in [L1] provides us with a

uniformly convex norm, when δ(X) ≤ ω. And we prove that the norm built this way

has a modulus of convexity bounded below by a power function. By doing so we obtain

Pisier’s renorming result ([Pi]).

In section 3, we study the links between the condition Sz(X) ≤ ω and the

existence of an equivalent norm on X whose dual norm has the uniform Kadec-Klee

property for the weak∗-topology (UKK∗), a property that has been essentially intro-

duced by R. Huff in [Hu]. After noticing that the existence of such a norm implies

Sz(X) ≤ ω, we prove a partial result for the general converse problem : if X is a

separable Banach space with Sz(X) ≤ ω, then there is an equivalent weak∗ lower semi-

continuous positively homogeneous functional on X∗ with the UKK∗ property. Next we

show that the situation is particularly simple for Lp(X) spaces. Indeed we obtain that

if 1 < p < +∞, Lp([0, 1],X) has an equivalent UKK norm if and only if Lp([0, 1],X)

has an equivalent norm whose dual norm is UKK∗ if and only if X is super-reflexive.

Then we solve this problem in the case of C(K) spaces, for K scattered compact space,

by showing that C(K) has an equivalent norm whose dual norm is UKK∗ if and only if

the ωth Cantor derived set K(ω) is empty if and only if Sz(C(K)) ≤ ω.

2. Dentability index and uniform convexity. For the definitions and for

a survey of the renorming results concerning the super-reflexive spaces, we refer the

reader to the book of R. Deville, G. Godefroy and V. Zizler ([D-G-Z]).

We shall start with the following easy fact, already mentioned in [L1]:

Proposition 2.1. δ(X) ≤ ω if and only if X admits an equivalent uniformly

convex norm (or equivalently X super-reflexive).

P r o o f. From the existence of an equivalent uniformly convex norm, it follows

easily that for any ε > 0, δ(X, ε) < ω.

Let us now assume that X is not super-reflexive. Then X has the finite tree

property (see R.C. James [J1]). So there exists ε > 0 such that for any n ∈ N there

is a dyadic tree (xs)s∈2≤n ⊆ BX (where 2≤n denotes the set of sequences of 0 and

1 with length ≤ n) satisfying: for any s ∈ 2≤n−1, ||xs⌢0 − xs⌢1|| ≥ 2ε and xs =
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1

2
(xs⌢0 + xs⌢1). It is now easy to see that (xs)s∈2≤n−1 ⊆ F ′

ε. Indeed for s ∈ 2≤n−1,

any slice containing xs must contain either xs⌢0 or xs⌢1. Therefore, this slice is of

diameter > ε. Proceeding inductively we obtain that Fn
ε 6= Ø. Thus, for any n,

0 ∈ Fn
ε , because Fn

ε is convex and symmetric. Therefore 0 ∈ Fω
ε . So δ(X) > ω. �

We will now use the techniques developed in [L1] in order to give a new

construction of uniformly convex norms with a power type modulus on super-reflexive

spaces.

Theorem 2.2. (Pisier) Let X be a Banach space. If δ(X) ≤ ω, then X admits

an equivalent uniformly convex norm | |. Moreover, the modulus of convexity δ| |(ε) of

this norm satisfies:

∃ C > 0,∃ p ≥ 2, such that : ∀ 0 < ε ≤ 2, δ| |(ε) ≥ Cεp.

P r o o f. For any ε > 0, δ(X, ε) < ω. Let us denote Nk = δ(X, 2−k) − 1, and

f(x) = ‖x‖ +
∞
∑

k=1

Nk
∑

n=1

2−k

Nk
d(x, Fn

2−k ),

where ‖ ‖ denotes the initial norm on X and d(x, Fn
2−k ) the distance from x to Fn

2−k

for this norm.

Let | | be the Minkowski functional of the convex symmetric set

C = {x ∈ X : f(x) ≤ 1}. Then, for all x ∈ X : ‖x‖ ≤ |x| ≤ 2‖x‖. So | | is an

equivalent norm on X.

We will first show that f is uniformly convex and evaluate its modulus of

convexity in terms of the index δ(X, ε).

Lemma 2.3. For any ε > 0 and any x, y in X:

if f(x) = f(y) = 1 and ||x − y|| ≥ ε, then: f

(

x + y

2

)

≤ 1 −
ε2

32δ2(X, ε
8 )

.

P r o o f. Let ε > 0 and let x and y in X such that f(x) = f(y) = 1 and

‖x − y‖ ≥ ε. Let k ∈ N such that
ε

8
≤ 2−k <

ε

4
.
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Let n = Max{m ≥ 0 : x ∈ Fm
2−k and y ∈ Fm

2−k}. Assume for instance that x ∈

Fn
2−k \ Fn+1

2−k . Remark that, since ‖x − y‖ ≥ ε, we have that n < Nk. Finally, put

γ =
ε

4Nk
.

Claim. There exists l, 1 ≤ l ≤ Nk − n, such that:

1

2

(

d(x, Fn+l
2−k ) + d(y, Fn+l

2−k )
)

− d

(

x + y

2
, Fn+l

2−k

)

≥ γ.

P r o o f o f C l a i m. Suppose that for all 1 ≤ l ≤ Nk − n:

(∗)
1

2

(

d(x, Fn+l
2−k ) + d(y, Fn+l

2−k )
)

− d

(

x + y

2
, Fn+l

2−k

)

< γ

Then we will show by induction that for all 1 ≤ l ≤ Nk − n:

(Pl)
1

2

(

d(x, Fn+l
2−k ) + d(y, Fn+l

2−k )
)

< lγ

For l = 1: we have x, y ∈ Fn
2−k and ‖x − y‖ ≥ ε, so

x + y

2
∈ Fn+1

2−k .

Thus, (∗) implies that
1

2

(

d(x, Fn+1
2−k ) + d(y, Fn+1

2−k )
)

< γ. So (P1) is satisfied.

Assume (Pl) is verified. Then there exist x′, y′ ∈ Fn+l
2−k such that

1

2
(‖x − x′‖ + ‖y − y′‖) < lγ, therefore ‖x′ − y′‖ > ε − 2lγ ≥

ε

2
and

x′ + y′

2
∈ Fn+l+1

2−k .

But

∥

∥

∥

∥

x + y

2
−

x′ + y′

2

∥

∥

∥

∥

< lγ, so d

(

x + y

2
, Fn+l+1

2−k

)

< lγ.

Then property (∗) implies that:

1

2

(

d(x, Fn+l+1
2−k ) + d(y, Fn+l+1

2−k )
)

< (l + 1)γ

which concludes the inductive proof of (Pl).

So in particular:
1

2

(

d(x, FNk

2−k ) + d(y, FNk

2−k )
)

< (Nk − n)γ ≤ Nkγ =
ε

4
. Thus

there exist x′, y′ ∈ FNk

2−k such that
1

2
(‖x−x′‖+‖y−y′‖) <

ε

4
and therefore ‖x′−y′‖ >

ε

2
.

It follows that
x′ + y′

2
∈ FNk+1

2−k , which is impossible because FNk+1
2−k is empty. �

End o f t h e p r o o f o f L e mm a 2.3. The functions ‖ · ‖ and d(·, Fn
2−k ) are

all convex, so:
1

2
(f(x) + f(y)) − f

(

x + y

2

)

≥
2−k

Nk
·

ε

4Nk
≥

ε2

32N2
k

.
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Therefore f

(

x + y

2

)

≤ 1 −
ε2

32δ2(X, ε
8)

. �

Let us denote by δf the modulus of convexity of the function f . It is not

difficult to see that Lemma 2.3. implies that | | is uniformly convex. More precisely:

δ| |(ε) ≥
1

4
δf

(

ε

2

)

. Then the conclusion of Theorem 2.2. will follow from the next

proposition:

Proposition 2.4. Let X be a Banach space. If δ(X) ≤ ω, then there exist

q > 1 and C ′ > 0 such that: for any 0 < ε ≤ 2, δ(X, ε) ≤
C ′

εq
.

We will first prove a similar result for the weak-Szlenk index:

Lemma 2.5. Let X be a Banach space. If Szw(X) ≤ ω, then there exist

q > 1 and C ′′ > 0 such that: for any 0 < ε ≤ 2, Szw(X, ε) ≤
C ′′

εq
.

P r o o f. First we will show that

∀ε > 0,∀ε′ > 0, Szw(X, εε′) ≤ Szw(X, ε)Szw(X, ε′).

It is enough to prove by induction that ∀n ∈ N F
〈n.Szw(X,ε′)〉
εε′ ⊆ F

〈n〉
ε .

This is clearly true for n = 0, so let us assume that F
〈n.Szw(X,ε′)〉
εε′ ⊆ F

〈n〉
ε .

Let x such that x /∈ F
〈n+1〉
ε . We need to show that x /∈ F

〈(n+1).Szw(X,ε′)〉
εε′ , so we may

assume that x ∈ F
〈n〉
ε . Thus there is a weak-open set V containing x and such that

diam(V ∩ F
〈n〉
ε ) ≤ ε. But (εBX)

〈Sw(X,ε′)〉
εε′ = Ø, so, for every subset C of diameter ≤ ε,

C
〈Szw(X,ε′)〉
εε′ = Ø. Therefore x /∈ F

〈(n+1).Szw(X,ε′)〉
εε′ .

Now, it follows from the submultiplicativity of the function Szw(X, ·) that there

exists q > 1 such that Szw(X, ε) = O

(

1

εq

)

(this argument is classical: see for instance

Maurey’s argument for Pisier’s renorming result appearing in [B] and detailed in

[D-G-Z]). �

It seems to us very unlikely that the function δ(X, ·) is submultiplicative. But

this difficulty is overcome by the next lemma which enables us to control δ(X) by

Szw(L2(X)).

Lemma 2.6. Let X be a Banach space, 1 < p < +∞, F = BX and

L = BLp([0,1],X). For any ε > 0, any ordinal α and any k in N we have the following:
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if x1, . . . , xk belong to Fα
ε , then

∑k
i=1 xi1l[ i−1

k
, i
k
[ ∈ L

〈α〉
ε/2 (where 1l[ i−1

k
, i
k
[ is the indicator

function of
[

i−1
k , i

k

[

).

Consequently δ(X, ε) ≤ Szw(Lp(X), ε/2) and δ(X) ≤ Szw(Lp(X)).

P r o o f. We will prove this by transfinite induction.

The case α = 0 is obvious and the property stated in this lemma passes clearly

to limit ordinals.

Assume this property is true for α.

Let x1, . . . , xk in Fα+1
ε and let V be a weakly open subset of Lp(X) containing

k
∑

i=1

xi1l[ i−1

k
, i
k
[ (by induction hypothesis

k
∑

i=1

xi1l[ i−1

k
, i
k
[ ∈ L

〈α〉
ε/2).

By Hahn Banach theorem, there exists l ≥ 1 such that

∀1 ≤ i ≤ k,∃(xi,j)
l
j=1 ⊆ Fα

ε verifying:

∥

∥

∥

∥

∥

∥

1

l

l
∑

j=1

xi,j − xi

∥

∥

∥

∥

∥

∥

< γ and for all 1 ≤ j ≤ l,

‖xi,j − xi‖ >
ε

2
where γ is a positive real number, small enough to insure that the ball

of radius γ and centered at
∑k

i=1 xi1l[ i−1

k
, i
k
[ is included in V .

Let φn =
∑k

i=1

∑n
m=1

∑l
j=1 xi,j1l[ i−1

k
+ m−1

kn
+ j−1

knl
, i−1

k
+ m−1

kn
+ j

knl
[

We have that φn
ω

−→
k
∑

i=1





1

l

l
∑

j=1

xi,j



 1l[ i−1

k
, i
k
[. Therefore there exists n0 ≥ 1 such that

φn0
∈ V .

But, for all t ∈ [0, 1[,

∥

∥

∥

∥

∥

φn0
(t) −

k
∑

i=1

xi1l[ i−1

k
, i
k
[(t)

∥

∥

∥

∥

∥

>
ε

2
, so

∥

∥

∥

∥

∥

φn0
−

k
∑

i=1

xi1l[ i−1

k
, i
k
[

∥

∥

∥

∥

∥

>
ε

2
.

But, by induction hypothesis φn0
∈ L

〈α〉
ε/2.

Therefore, diam(V ∩ L
〈α〉
ε/2) >

ε

2
and

k
∑

i=1

xi1l[ i−1

k
, i
k
[ ∈ L

〈α+1〉
ε/2 . �

P r o o f o f P r o p o s i t i o n 2.4. Let X be a Banach space such that δ(X) ≤ ω.

We already know, by Lemma 2.3, that X has an equivalent uniformly convex norm. So

L2(X) does too (see for instance M.M. Day’s proof [Da]). Therefore Szw(L2(X)) ≤ ω.

Thus there is q > 1 so that Szw(L2(X), ε) = O(
1

εq
) ( Lemma 2.5). But, Lemma 2.6

implies that δ(X, ε) ≤ Szw(L2(X)),
ε

2
). So δ(X, ε) = O(

1

εq
). �

Remark. This can be seen as an alternative proof of Pisier’s result, knowing

Enflo’s theorem. Indeed we are still lacking a direct proof of the fact that X super-
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reflexive implies δ(X) ≤ ω. However, the main interest of this construction is to give

a simple and geometrical procedure for building uniformly convex norms with power

type moduli.

3. Szlenk indices and uniform Kadec-Klee Properties. In this section

we will study the following notions:

Definition 3.1. Let X be a Banach space.X has the uniform Kadec-Klee

property (denoted UKK), if for any ε > 0, there exists ∆ > 0 such that: if for any

weak-neighborhood V of x, diam(V ∩ BX) > ε, then ‖x‖ ≤ 1 − ∆.

Definition 3.2. Let X be a Banach space. X∗ has the uniform Kadec-Klee

property for the weak∗-topology (UKK∗), if for any ε > 0, there exists ∆ > 0 such that:

if for any weak∗-neighborhood V of x∗, diam(V ∩ BX∗) > ε, then ‖x∗‖ ≤ 1 − ∆.

These definitions extend the usual ones introduced by R. Huff ([Hu]).

Clearly, if X has the property UKK, then Szw(X) ≤ ω and if X∗ has the

property UKK∗, then Sz(X) ≤ ω. So it is natural to ask the following questions: let X

be a Banach space satisfying Szw(X) ≤ ω (respectively Sz(X) ≤ ω), does X have an

equivalent UKK norm (respectively an equivalent norm whose dual norm is UKK∗)? If

so, can we construct this norm with a power type modulus ∆(ε)?

3.1. The general case.

We present now the partial general result that we have obtained in this direction.

Theorem 3.3. Let X be a separable Banach space.Then Sz(X) ≤ ω if and

only if there exists a function f : X∗ → R
+ weak∗-lower semi-continuous (ω∗-l.s.c.)

verifying:

i) ∀x∗ ∈ X∗ 1

2
‖x∗‖ ≤ f(x∗) ≤ ‖x∗‖.

ii) ∀λ ∈ R f(λx∗) = |λ|f(x∗).

iii) ∀ε > 0, ∃ ∆ = ∆f (ε) > 0 so that, for any sequence (x∗
n)n≥0 in {y∗ ∈ X∗ :

f(y∗) ≤ 1} and any x∗ in X∗: (x∗
n

ω∗

−→ x∗ and ∀ n 6= m ‖x∗
n − x∗

m‖ > ε) ⇒ f(x∗) ≤

1 − ∆.
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Moreover, in this case, we can construct f such that there exist p ≥ 1 and C > 0

verifying, for any 0 < ε ≤ 2, ∆(ε) ≥ Cεp.

P r o o f. The “if” part is clear, so let us assume that Sz(X) ≤ ω. The first step

of our construction will be to show the following proposition:

Proposition 3.4. Let X be a separable Banach space.

If Sz(X) ≤ ω, then for any ε > 0, there exists hε : X∗ → R
+ such that:

i) ∀x∗ ∈ X∗ 1

2
‖x∗‖ ≤ hε(x

∗) ≤ ‖x∗‖.

ii) ∀λ ∈ R hε(λx∗) = |λ|hε(x
∗).

iii) There exists ∆1(ε) > 0 such that for any x∗ ∈ X∗ \{0} and any (x∗
n)n≥0 in

X∗, if x∗
n

ω∗

−→ x∗ and ∀k 6= k′ ‖x∗
k − x∗

k′‖

lim sup ‖x∗
n‖

> ε then hε(x
∗) ≤ (1−∆1(ε)) lim inf hε(x

∗
n).

Moreover, there are q ≥ 1 and C ′ > 0 so that for all 0 < ε ≤ 2, ∆1(ε) ≥ C ′εq.

P r o o f. This proof is inspired by the construction made by P. Enflo in [E] in

order to renorm super-reflexive spaces. We will therefore use a similar vocabulary:

Let x∗ ∈ X∗ \ {0}, n ∈ R and ε > 0.

we call (n, ε)-partition of x∗ any family (x∗
s)s∈ω≤n ⊆ X∗ verifying:

a) x∗
Ø = x∗.

b) ∀s ∈ ω≤n−1, ∀k 6= k′,
‖x∗

s⌢k − x∗
s⌢k′‖

lim sup ‖x∗
s⌢n‖

> ε.

c) ∀s ∈ ω≤n−1, x∗
s⌢n

ω∗

−→ x∗
s.

We will begin with the following lemma:

Lemma 3.5. Let ε > 0 and n ≥ Sz(X,
ε

3
) = n(ε). If (x∗

s)s∈ω≤n is an

(n, ε)-partition of x∗ then

lim infi1 . . . lim infin ‖x∗
(i1,..,in)‖ ≥ 3‖x∗‖.

P r o o f. We may assume ‖x∗‖ = 1. Let (x∗
s)s∈ω≤n be an (n, ε)-partition of x∗

such that lim infi1 . . . lim infin ‖x∗
(i1,...,in)‖ < 3. By extracting a subpartition, we may

assume that (x∗
s)s∈ω≤n ⊆ 3BX∗ . But since ‖x∗‖ = 1, we may also assume that for all

s ∈ ω≤n−1, lim sup ‖x∗
s⌢n‖ ≥ 1. So ∀k 6= k′, ‖x∗

s⌢k − x∗
s⌢k′‖ > ε. Thus x∗ ∈ (3BX∗)

[n]
ε .

Hence
1

3
x∗ ∈ (BX∗)

[n]
ε/3 and therefore n < Sz(X,

ε

3
). �
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Remark. By Lemma 2.5. there exists q ≥ 1 such that n(ε) = O(
1

εq
).

End o f p r o o f o f P r o p o s i t i o n 3.4. Put hε(0) = 0. and for x∗ 6= 0:

hε(x
∗) = inf{

lim infi1 . . . lim infin ‖x∗
(i1,...,in)‖

1 + γ
n
∑

k=1

1

k2

n ∈ N, (x∗
s)s∈ω≤n (n, ε) − partition of x∗}, where γ =

6

π2
.

since x∗ is an (n, ε)-partition of x∗, we have hε(x
∗) ≤ ‖x∗‖.

On the other hand, for any (n, ε)-partition of x∗:

lim infi1 . . . lim infin ‖x∗
(i1,...,in)‖

1 + γ
n
∑

k=1

1

k2

>
‖x∗‖

1 + γ
∞
∑

k=1

1

k2

=
1

2
‖x∗‖.

So point i) of Proposition 3.4. is satisfied.

It follows clearly from the definition of hε that ii) is also satisfied.

Now let x∗ ∈ X∗ \ {0} and (x∗
n)n≥0 in X∗ such that

x∗
n

ω∗

−→ x∗ and ∀k 6= k′ ‖x∗
k − x∗

k′‖

lim sup ‖x∗
n‖

> ε.

Let 0 < β <
1

2
and let (x∗

s(n))s∈ω≤kn a (kn, ε)-partition of x∗
n such that:

(1 + β)hε(x
∗
n) >

lim infi1 . . . lim infikn
‖x∗

(i1,...,ikn )(n)‖

1 + γ
kn
∑

l=1

1

l2

.

We want to show an inequality of the type hε(x
∗) ≤ (1 − ∆1) lim inf hε(x

∗
n). So we

may assume, by taking a subsequence, that hε(x
∗
n) −→ lim inf hε(x

∗
n). Moreover, by

Lemma 3.5, we have that for all n ∈ N, kn < n(ε). So we can assume, by taking a new

subsequence, that there exists k < n(ε) such that for all n ∈ N, kn = k. Then we get
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that {x∗} ∪
∞
⋃

n=0

(x∗
s(n))s∈ω≤k is a (k + 1, ε)-partition of x∗. Therefore

hε(x
∗) ≤

lim infn lim infi1 . . . lim infik ‖x
∗
(i1,...,ik)(n)‖

1 + γ
k+1
∑

l=1

1

l2

≤

1 +
k
∑

l=1

1

l2

1 + γ
k+1
∑

l=1

1

l2

(1 + β) lim inf hε(x
∗
n).

Since k < n(ε),

1 + γ
k
∑

l=1

1

l2

1 + γ
k+1
∑

l=1

1

l2

≤

1 + γ

n(ε)−1
∑

l=1

1

l2

1 + γ

n(ε)
∑

l=1

1

l2

= 1 − ∆1(ε).

From the above remark it follows that there exist q ≥ 1 and C ′ > 0 such that for all

0 < ε ≤ 2, ∆1(ε) ≥ C ′εq.

Furthermore, for all 0 < β <
1

2
: hε(x

∗) ≤ (1−∆1(ε))(1+ β) lim inf hε(x
∗
n), so hε(x

∗) ≤

(1 − ∆1(ε)) lim inf hε(x
∗
n). �

P r o o f o f T h e o r em 3.3. Let us now denote fε the weak∗-lower semi-

continuous regularization of hε, namely

fε(x
∗) = sup{ inf

y∗∈V
hε(y

∗) : V weak∗-neighborhood ofx∗}

fε is ω∗-l.s.c. and keeps clearly the properties i) and ii) of hε.

fε enjoys also a property similar to iii). More precisely, we have:

Lemma 3.6. Let ε > 0. For any x∗ ∈ X∗ \ {0} and any sequence (x∗
n)n≥0 in

X∗: if

x∗
n

ω∗

−→ x∗ and ∀ k 6= k′ ‖x∗
k − x∗

k′‖

lim sup ‖x∗
n‖

> ε

then

fε(x
∗) ≤ (1 − ∆1(

ε

8
)) lim inf fε(x

∗
n).
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P r o o f. Since fε satisfies ii), it is enough to show that

if (x∗
n)n≥0 ⊆ {y∗ ∈ X∗ : fε(y

∗) < 1}, then fε(x
∗) ≤ 1 − ∆1(

ε

8
).

So let x∗ 6= 0 and (x∗
n)n≥0 ⊆ {y∗ ∈ X∗ : fε(y

∗) < 1} satisfying the hypotheses

of Lemma 3.6. Let V and V ′ two weak∗-neighborhoods of x∗ such that V ′∗ ⊆ V (V ′∗

denotes the weak∗-closure of V ). By taking a subsequence we may assume that for all

n ∈ N:

x∗
n ∈ V ′ and ∀n ≥ 0

‖x∗
n − x∗‖

lim sup ‖x∗
n‖

>
ε

2
.

On the other hand, we have that for any n ∈ N and any weak∗-neighborhood W of x∗
n,

there exists z∗ ∈ W such that hε(z
∗) < 1.

We will now build by induction a sequence (z∗k)k≥0 ⊆ V ′ such that:

∀k ∈ N,
‖z∗k − x∗‖

lim sup ‖x∗
n‖

>
ε

2
and hε(z

∗
k) < 1 and ∀k 6= k′,

‖z∗k − z∗k′‖

lim sup ‖x∗
n‖

>
ε

2
.

Put z∗0 = x∗
0.

Suppose z∗0 , . . . , z
∗
k constructed. Then there is a weak∗-neighborhood U of x∗ such that:

∀0 ≤ i ≤ k,∀y∗ ∈ U :
‖z∗i − y∗‖

lim sup ‖x∗
n‖

>
ε

2
.

Since x∗
n

ω∗

−→ x∗, there exists N such that ∀0 ≤ i ≤ k,
‖z∗i − x∗

N‖

lim sup ‖x∗
n‖

>
ε

2
.

On the other hand
‖x∗ − x∗

N‖

lim sup ‖x∗
n‖

>
ε

2
. So there is a weak∗-neighborhood W of x∗

N with

W ⊆ V ′ and such that

∀z∗ ∈ W,∀0 ≤ i ≤ k :
‖z∗i − z∗‖

lim sup ‖x∗
n‖

>
ε

2
and

‖x∗ − z∗‖

lim sup ‖x∗
n‖

>
ε

2
.

To conclude this induction we choose z∗k+1 ∈ W such that hε(z
∗
k+1) < 1.

To show that fε(x
∗) ≤ 1 − ∆1(

ε

8
), we may assume that lim sup ‖x∗

n‖ >
1

2
.

But hε(z
∗
k) < 1 implies ‖z∗k‖ < 2, thus ‖z∗k‖ < 4 lim sup ‖x∗

n‖. Therefore

∀k 6= k′,
‖z∗k − z∗k′‖

lim sup ‖z∗n‖
>

ε

8
.

Now, there are a subsequence (z∗ki
)i≥0 and z∗ ∈ X∗ such that z∗ki

ω∗

−→ z∗.
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So, by Proposition 3.4, hε(z
∗) ≤ 1 − ∆1(

ε

8
).

But (z∗ki
)i≥0 ⊆ V ′ ⊆ V ′∗ ⊆ V . Thus z∗ ∈ V and therefore infy∗∈V hε(y

∗) ≤ 1 − ∆1(
ε

8
).

This is true for any weak∗-neighborhood V of x∗, so we have indeed fε(x
∗) ≤ 1−∆1(

ε

8
).

�

End o f p r o o f o f T h e o r em 3.3. Put f(x∗) =
∞
∑

i=1

2−if2−i(x∗).

f is ω∗-l.s.c. and satisfies properties i) and ii).

Let ε > 0 and (x∗
n)n≥0 ⊆ {y∗ ∈ X∗ : f(y∗) ≤ 1} such that x∗

n
ω∗

−→ x∗ and ∀n 6=

m ‖x∗
n − x∗

m‖ > ε for any n ≥ 0, fε(x
∗
n) ≤ 1, so ‖x∗

n‖ ≤ 2 and therefore

∀k 6= k′,
‖x∗

k − x∗
k′‖

lim sup ‖x∗
n‖

>
ε

2
.

Let i0 ≥ 1 such that
ε

4
< 2−i0 ≤

ε

2
. By Lemma 3.6:

f2−i0 (x
∗) ≤

(

1 − ∆1(
2−i0

8
)

)

lim inf f2−i0 (x
∗
n).

Moreover, for any i 6= i0, f2−i(x∗) ≤ lim inf f2−i(x∗
n), because the functions f2−i are

ω∗-l.s.c.

So f(x∗) ≤
∞
∑

i=1

2−i lim inf f2−i(x∗
n) − 2−i0∆1(

2−i0

8
) lim inf f2−i0 (x

∗
n)

In order to show iii), we may assume ‖x∗‖ >
1

2
and then lim inf f2−i0 (x

∗
n) ≥

1

4
. So

f(x∗) ≤ lim inf f(x∗
n) −

ε

16
∆1(

ε

32
) ≤ 1 −

ε

16
∆1(

ε

32
).

∆f (ε) ≥
ε

16
∆1(

ε

32
). So by Proposition 3.4, there exist p ≥ 1 and C > 0 such

that for any 0 < ε ≤ 2, ∆f (ε) ≥ Cεp. �

Remark. S. Prus studied in [Pr] the UKK renorming problem in the case

of reflexive Banach spaces with a Schauder basis. He proved that such a space has an

equivalent UKK norm if and only if there is a sequence of blocks of the original basis

satisfying some ℓp estimates. Building on this idea, Odell and Knaust recently solved

the renorming for spaces with a Szlenk index less than or equal to ω, in the case of

reflexive spaces with a finite dimensional decomposition.

3.2. Lp(X) spaces.

In this paragraph we consider the Lebesgue-Bochner space Lp([0, 1],X) (de-

noted Lp(X)), for 1 < p < ∞. In [Pa], J.R. Partington proves that if Lp(X) is reflexive
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with the UKK property, then X is uniformly convex. We give now an isomorphic ver-

sion of this result, which follows from Lemma 2.6., as it has been already partly noticed

in [D-G-K]. The result is the following:

Theorem 3.7. Let X be a Banach space and let 1 < p < ∞. The following

assertions are equivalent:

i) X is super-reflexive.

ii) Lp(X) admits an equivalent UKK norm.

iii) Szw(Lp(X)) ≤ ω.

iv) Lp(X) admits an equivalent norm whose dual norm is UKK∗.

v) Sz(Lp(X)) ≤ ω.

P r o o f. i) implies ii): If X is super-reflexive, then X admits an equivalent

uniformly convex norm which induces on Lp(X) an equivalent uniformly convex norm

which is therefore UKK.

ii) implies iii) is clear.

iii) implies i): Suppose Szw(Lp(X)) ≤ ω. Then, by Lemma 2.6 we have that δ(X) ≤ ω.

So, by Proposition 2.1, X is super-reflexive.

i) implies iv): If X is super-reflexive, then X admits an equivalent norm whose dual

norm is uniformly convex. This norm induces on (Lp(X))∗ = Lq(X∗) (where
1

p
+

1

q
= 1)

a dual uniformly convex norm which is therefore UKK∗.

iv) implies v) clearly.

v) implies i): let us assume that Sz(Lp(X) ≤ ω, and let q be such that
1

p
+

1

q
= 1.

We may consider Lq(X∗) as a closed subspace of (Lp(X))∗. Thus Szw(Lq(X∗)) ≤

Szw((Lp(X))∗) ≤ Sz(Lp(X)). On the other hand, by Lemma 2.6, we have that δ(X∗) ≤

Szw(Lq(X∗)). So δ(X∗) ≤ ω and therefore X and X∗ are super-reflexive. �

3.3. C(K) spaces.

The C(K) spaces, for K scattered compact space, have been in the last few

years the source of many results and especially of many counterexamples in renorming

theory (see for instance the papers of R. Deville [De], M. Talagrand [T], R. Haydon

[H1,2], R. Haydon and C.A. Rogers [H-R]). We are able to give a positive answer to

our renorming problem for this class of Banach spaces.

So, let K be a compact space. Let us recall that for a closed subset F of K

the Cantor derived set F (′) of F is the set of all non isolated points of F . K(α), for α
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ordinal, can then be defined inductively in the usual way.

Theorem 3.8. Let K be a compact space. The following assertions are

equivalent :

i) K(ω) = Ø.

ii) Sz(C(K)) ≤ ω.

iii) C(K) admits an equivalent norm whose dual norm is UKK∗.

P r o o f. iii) ⇒ ii) is clear and ii) ⇒ i) relies on the fact that if x ∈ K(α) then

the Dirac measure δx ∈ (B(C(K))∗)
[α]
1 . So let us prove that i) ⇒ iii). For that purpose

we will adapt to our setting Deville’s construction (in [De]) of a norm with a locally

uniformly convex dual norm on C(K) spaces with K(ω1) = Ø.

Let K be a compact space such that K(ω) = Ø. Then there exists an integer N

for which K(N) is finite. For µ ∈ (C(K))∗ we denote ‖|µ‖| =
∑

x∈K αx|µ(x)|, where αx

is defined by:

if x ∈ K(i) \ K(i+1), then αx =
1

2i
.

‖| · ‖| is an equivalent norm on (C(K))∗. The fact that ‖| · ‖| is a dual norm needs a

proof that can be found in [De]. Let us just point out that this is essentially due to the

fact that αx is a decreasing function of the integer i such that x ∈ K(i) \ K(i+1).

We need to show that ‖|·‖| has the UKK∗ property. So let ε > 0 and µ ∈ (C(K))∗

such that for every weak∗-neighborhood V of µ, ‖| · ‖| − diam(V ∩B‖|·‖|) > 2ε (B‖|·‖| is

the unit ball of ‖| · ‖|).

We can find a finite subset F of K such that K(N) ⊆ F and µ = λ+
∑

x∈F

µ(x)δx

with ‖λ‖ < γ (‖ · ‖ is the natural norm on (C(K))∗ and γ is a positive number that we

will precise later). Since K(N) ⊆ F , we can find (Ax)x∈F a partition of K into clopen

sets satisfying : for any x in F , Ax ∩ K(ix) = {x}, where ix is the integer i such that

x ∈ K(i) \ K(i+1). Thus there is ν such that ‖|ν‖| ≤ 1, ‖|ν − µ‖| > ε and

∀x ∈ F

∣

∣

∣

∣

∣

∣

∑

y∈Ax

µ(y) −
∑

y∈Ax

ν(y)

∣

∣

∣

∣

∣

∣

< γ′ (γ′ > 0 to be chosen later).

Let x ∈ F , we have
∑

y∈Ax\{x}

|µ(y) − ν(y)| > |µ(x) − ν(x)| − γ′.

Since for any y in Ax \ {x}, αy ≥ 2αx, we get

∑

y∈Ax\{x}

αy(|µ(y)| + |ν(y)|) > 2αx|µ(x) − ν(x)| − γ′.
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Hence,

∑

y∈Ax\{x}

αy|µ(y)| <
∑

y∈Ax\{x}

αy|ν(y)| − 2αx|µ(x) − ν(x)| + γ′ + 2
∑

y∈Ax\{x}

αy|µ(y)|.

On the other hand |µ(x)| ≤ |ν(x)| + |µ(x) − ν(x)|, therefore

∑

y∈Ax

αy|µ(y)| <
∑

y∈Ax

αy|ν(y)| − αx|µ(x) − ν(x)| + γ′ + 2
∑

y∈Ax\{x}

αy|µ(y)|.

So ‖|µ‖| ≤ ‖|ν‖| −
∑

x∈F

αx|µ(x) − ν(x)| + |F |γ′ + 2γ (|F | is the cardinality of F ).

We have now two possibilities:

1) if
∑

x∈F

αx|µ(x) − ν(x)| >
ε

3
, then a right choice of γ and γ′ will insure, by the above

inequality, that ‖|µ‖| < 1 −
ε

4
.

2) if
∑

x∈F

αx|µ(x)−ν(x)| ≤
ε

3
, then

∑

x/∈F

αx|µ(x)−ν(x)| >
2ε

3
. So

∑

x/∈F

αx|ν(x)| >
2ε

3
−γ,

while
∑

x/∈F

αx|µ(x)| < γ.

Therefore ‖|µ‖| ≤ ‖|ν‖| +
ε

3
−

2ε

3
+ 2γ, which implies again, if γ was chosen small

enough, that ‖|µ‖| < 1 −
ε

4
. �

Remark. It is a well known phenomenon in geometry of Banach spaces that

the existence of nicely convex dual or bidual norms implies nice properties of the space,

such as being an Asplund space or reflexivity (see for instance the book of R. Deville,

G. Godefroy and V. Zizler [D-G-Z]).

The situation in similar for the property UKK∗:

If X has an equivalent norm whose dual norm is UKK∗, then X is an Asplund space.

Indeed, in this case, Sz(X) ≤ ω, so X has also an equivalent Fréchet-differentiable

norm, by the results in [L2], and therefore X is an Asplund space.

If X has an equivalent norm whose bidual norm is UKK∗, then it is easy to prove that

X is reflexive.

However, the James space J introduced by R.C. James in [J2] satisfies the following

properties: J has an equivalent norm whose dual norm is UKK∗, J∗ has an equivalent

norm whose dual norm is UKK∗ but J is not reflexive. A detailed proof of this

counterexample can be found in [L3].
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