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SOLUTIONS OF ANALYTICAL SYSTEMS OF PARTIAL

DIFFERENTIAL EQUATIONS

K. Trenčevski

Communicated by I. D. Iliev

Abstract. In this paper are examined some classes of linear and non-linear
analytical systems of partial differential equations. Compatibility conditions are
found and if they are satisfied, the solutions are given as functional series in a
neighborhood of a given point (x = 0).

1. Introduction. This paper is a continuation of the papers [2] – [5], and we

will give a brief view of them.

In the paper [2] it was found a formula for the k-th covariant derivative. Further

that formula was generalized for k ∈ R. Especially, if k = −1 it yields to a general

solution for a system of linear differential equations [3]. In the paper [4] is given an

application of [3] for solving the Frenet equations. In [5] two main theorems are proved.

The first theorem gives the solution of an analytical non-homogeneous linear system of

differential equations of order k of n equations and n unknown functions. The second

theorem gives the solution of a non-linear analytical system of differential equations (of

the first order) of n equations and n unknown functions.
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In this paper we will prove two main theorems, considering linear and non-linear

systems of partial differential equations. Without loss of generality, we will find the

required solutions in a neighborhood of the point (0, . . . , 0). To the author’s knowledge

there are not similar results proved by other authors.

The results of this paper have applications in the differential geometry [6],

in studying the non-linear connections [1]. For example the compatibility conditions

in this paper are nothing but vanishing of the curvature tensor of the corresponding

connections. If the systems of partial differential equations considered in this paper are

tensor equations, then the obtained solutions also have tensor character.

2. Homogeneous system of linear partial differential equations. Let us

consider the following system

(2.1)
∂yr

∂xu
+

n
∑

s=1

frsuys = 0 (1 ≤ r ≤ n, 1 ≤ u ≤ k)

of unknown functions y1, . . . , yn of k variables x1, . . . , xk and frsu are given analytical

functions of x1, . . . , xk, regular in a neighborhood of (0, . . . , 0). In order to consider the

compatibility conditions, we introduce the following functions

(2.2) Rtsuv =
∂ftsv

∂xu
−

∂ftsu

∂xv
+

n
∑

p=1

ftpufpsv −
n

∑

p=1

ftpvfpsu.

(1 ≤ u, v ≤ k, 1 ≤ t, s ≤ n)

If (2.1) is an integrable system for arbitrary initial conditions, then using that

∂

∂xv

∂yr

∂xu
=

∂

∂xu

∂yr

∂xv

and the system (2.1), it is easy to obtain that

(2.3) Rtsuv ≡ 0

1 ≤ u, v ≤ k and 1 ≤ t, s ≤n. Conversely, it is known that if (2.3) are satisfied, then

the system (2.1) is integrable. Indeed this assertion also follows from the Theorem 2.1.

Theorem 2.1. Let the system (2.1) with the initial conditions ys(0, . . . , 0) =

Cs (1 ≤ s ≤ n) be given and the compatibility conditions (2.3) be satisfied. Then there

exist functions P
<w1,...,wk>
ts (x1, . . . , xk), w1, . . . , wk ∈ N0 and 1 ≤ t, s ≤ n, such that

(2.4a) P
<0,...,0>
ts = δts;
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(2.4b) P
<w1,...,wu+1,...,wk>
ts =

∂

∂xu
P

<w1,...,wk>
ts +

n
∑

p=1

ftpuP<w1,...,wk>
ps

and the solution of (2.1) in a neighborhood of (0, . . . , 0) is given by

(2.5)
yr =

n
∑

s=1

∞
∑

w1=0

∞
∑

w2=0

· · ·
∞
∑

wk=0

(−x1)
w1

w1!
·
(−x2)

w2

w2!
· · ·

(−xk)
wk

wk!
· P<w1,...,wk>

rs Cs.

(1 ≤ r ≤ n)

This solution is unique with the given initial conditions in a neighborhood of (0, . . . , 0).

P r o o f. Let us suppose that the system (2.1) is given and the compatibility

conditions (2.3) are satisfied. In order to prove that there exist functions

P
<w1,...,wk>
ts (x1, . . . , xk) (w1, . . . , wk ∈ N0, 1 ≤ t, s ≤ n)

such that (2.4a) and (2.4b) are satisfied, it is sufficient to prove that

(2.6) P
<w1,...,w

(2)
u +1,...,w

(1)
v +1,...,wk>

ts = P
<w1,...,w

(1)
u +1,...,w

(2)
v +1,...,wk>

ts

for each t, s ∈ {1, . . . , n} and u, v ∈ {1, . . . , k}, u 6= v, where the notations (1) and (2)

show the order of the two increased indices. In fact

P
<w1,...,w

(2)
u +1,...,w

(1)
v +1,...,wk>

ts =
∂

∂xu
P

<w1,...,wv+1,...,wk>
ts +

+
n

∑

p=1

ftprP
<w1,...,wv+1,...,wk>
ps =

=
∂

∂xu





∂

∂xv
P

<w1,...,wk>
ts +

n
∑

q=1

ftqvP
<w1,...,wk>
qs



 +

+
n

∑

p=1

ftpu

[

∂

∂xv
P<w1,...,wk>

ps +
n

∑

a=1

fpavP
<w1,...,wk>
as

]

and similarly

P
<w1,...,w

(1)
u +1,...,w

(2)
v +1,...,wk>

ts =

=
∂

∂xv





∂

∂xu
P

<w1,...,wk>
ts +

n
∑

q=1

ftquP<w1,...,wk>
qs



 +
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+
n

∑

p=1

ftpv

[

∂

∂xu
P<w1,...,wk>

ps +
n

∑

a=1

fpauP<w1,...,wk>
as

]

.

Hence we obtain

P
<w1,...,w

(2)
u +1,...,w

(1)
v +1,...,wk>

ts − P
<w1,...,w

(1)
u +1,...,w

(2)
v +1,...,wk>

ts =

=
n

∑

q=1

RtquvP
<w1,...,wk>
qs ,

and (2.6) is satisfied because Rtquv ≡ 0.

Now we should prove that the functions (yr) of (2.5) satisfy the system (2.1).

First we prove the uniform convergence of the right side of (2.5) in a neighborhood of

(0, . . . , 0). We can consider analytical functions of complex variables. Suppose that

x = (x1, . . . , xk) is sufficiently close to (0, . . . , 0) such that all functions {frsu} are

regular in the disc Dx = {z = (z1, . . . , zk) : |z − x| < ρ} and 0 ∈ Dx. Hence

∣

∣

∣

∣

x

ρ

∣

∣

∣

∣

< 1.

Obviously, all functions P
<w1,...,wk>

ts are regular in Dx. In order to find an estimation

of P
<w1,...,wk>
ts from (2.4a) and (2.4b), some additional results should be given. Let

Dxu(1 ≤ u ≤ k) be an operator defined by

(2.7) Dxu(yr) =
∂yr

∂xu
+

n
∑

s=1

frsuys (1 ≤ r ≤ n).

If the compatibility conditions (2.3) are satisfied, then similarly to the result in [2], it

holds

(2.8)

(Dw1
x1

◦ Dw2
x2

◦ · · · ◦ Dwk
xk

)(yr) =
w1
∑

m1=0

· · ·
wk
∑

mk=0

n
∑

s=1

P<m1,...,mk>
rs ·

·
∂w1−m1+···+wk−mkys

∂xw1−m1
1 ∂xw2−m2

2 . . . ∂x
wk−mk

k

·
w1! . . . wk!

m1! . . . mk!(w1 − m1)! . . . (wk − mk)!
.

Since P
<w1,...,wk>
rj = (Dw1

x1
◦ · · · ◦ Dwk

xk
)δrj for fixed j, by putting yr = P

<1,...,1>
rj , we

obtain

P
<w1+1,...,wk+1>
rj =

w1
∑

m1=0

· · ·
wk
∑

mk=0

n
∑

s=1

P<m1,...,mk>
rs ·

·

[

∂w1−m1+···+wk−mk

∂xw1−m1
1 . . . ∂x

wk−mk

k

P
<1,...,1>
sj

]

w1! . . . wk!

m1! . . . mk!(w1 − m1)! . . . (wk − mk)!
.

This equality is suitable for estimation of
∣

∣

∣P
<w1,...,wk>
rj

∣

∣

∣.
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If Q
<w1,...,wk>
rj =

P
<w1,...,wk>
rj

w1! · · ·wk!
, then

(2.9)

Q
<w1+1,...,wk+1>
rj =

1

(w1 + 1) · · · (wk + 1)

w1
∑

m1=0

. . .

wk
∑

mk=0

n
∑

s=1

Q<m1,...,mk>
rs ·

·
∂w1−m1+···+wk−mk

∂xw1−m1
1 . . . ∂x

wk−mk

k

P
<1,...,1>
sj

1

(w1 − m1)! . . . (wk − mk)!
.

According to the Cauchy integral formula, it holds

(2.10) max
s,j

∣

∣

∣

∣

∣

∂w1−m1+···+wk−mk

∂xw1−m1
1 . . . ∂x

wk−mk

k

P
<1,...,1>
sj

∣

∣

∣

∣

∣

≤
M · (w1 − m1)! . . . (wk − mk)!

ρw1−m1+...+wk−mk
,

where M depends (continuously) only on x1, . . . , xk.

Let A<w1,...,wk>
r = maxj

∣

∣

∣Q
<w1,...,wk>
rj

∣

∣

∣. Then (2.9) and (2.10) imply

A<w1+1,...,wk+1>
r ≤

1

(w1 + 1) · · · (wk + 1)

w1
∑

m1=0

. . .

wk
∑

mk=0

A<m1,...,mk>
r ·

·
nM

ρw1−m1+···+wk−mk
.

Now if ρ is sufficiently small such that nMρk ≤ 1, then

A<w1+1,...,wk+1>
r ρ(w1+1)+...+(wk+1) ≤

≤
1

(w1 + 1) · · · (wk + 1)

w1
∑

m1=0

. . .

wk
∑

mk=0

A<m1,...,mk>
r ρm1+...+mk .

Moreover, we can suppose that instead of (2.10) it holds

max
s,j

∣

∣

∣

∣

∣

∂w1−m1+···+wk−mk

∂xw1−m1
1 . . . ∂x

wk−mk

k

P
<a1,...,ak>
sj

∣

∣

∣

∣

∣

≤
M(w1 − m1)! . . . (wk − mk)!

ρw1−m1+···+wk−mk

for each a1, . . . , ak ∈ {0, 1}, and ρ is such that nMρu ≤ 1 for 1 ≤ u ≤k. Now by

induction of k it is easy to verify that

A<m1,...,mk>
r ρm1+···+mk ≤ 1.
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Thus
∣

∣

∣

∣

1

w1! · · ·wk!
P

<w1,...,wk>
rj (x1, . . . , xk)

∣

∣

∣

∣

≤
1

ρm1+...+mk
,

and we have uniform convergence in (2.5) for |x1|, . . . , |xk| ≤ (1− ǫ)ρ. According to the

Weierstrass theorem, the functions yr are regular in a neighborhood of (0, . . . , 0) and

we can differentiate them by parts.

If C1, . . . , Cn are arbitrary constants, using (2.5) and (2.4b) we obtain

∂yr

∂xu
=

n
∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · · (−1)

(−xu)wu−1

(wu − 1)!
· · ·

(−xk)
wk

wk!
·

·P<w1,...,wk>
rs Cs+

+
n

∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!
·

∂

∂xu
P<w1,...,wk>

rs Cs

= −
n

∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xu)wu

wu!
· · ·

(−xk)
wk

wk!
·

·P<w1,...,wu+1,...,wk>
rs Cs+

+
n

∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!
·

∂

∂xu
P<w1,...,wk>

rs Cs =

= −
n

∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!
·

[

P<w1,...,wu+1,...,wk>
rs −

∂

∂xu
P<w1,...,wk>

rs

]

Cs =

= −
n

∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!

n
∑

p=1

frpuP<w1,...,wk>
ps Cs =

= −
n

∑

p=1

frpu





n
∑

s=1

∑

w1,...,wk∈N0

(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!
P<w1,...,wk>

ps Cs





= −
n

∑

p=1

frpuyp,

i.e. (2.1) is satisfied. Moreover, using (2.4a) we obtain

yr(0, . . . , 0) = P<0,...,0>
rs Cs = δrsCs = Cr.
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To the end of the proof we have only to prove the uniqueness of the solution of

(2.1). Since the system (2.1) is linear, it is sufficient to prove that ys(0, . . . , 0) = Cs = 0

(1 ≤ s ≤ n) implies ys = 0 (1 ≤ s ≤ n). Since the functions frsu are analytical, each

solution of (2.1) is analytical. Using that ys(0, . . . , 0) = 0, it follows from (2.1) that the

first partial derivatives of ys vanish at (0, . . . , 0). By successive partial differentiations

of (2.1), all partial derivatives of ys vanish at (0, . . . , 0). Hence ys(x1, . . . , xk) = 0 in a

neighborhood of (0, . . . , 0). �

3. Non-linear system of partial differential equations. Let us consider

the following non-linear system of partial differential equations

∂yr

∂xu
+ F (x1, . . . , xk, y1, . . . , yn) = 0 (1 ≤ r ≤ n, 1 ≤ u ≤ k).

We suppose that F (x1, . . . , xk, y1, . . . , yn) can be written in a Laurent’s series, i.e.

(3.1)

∂yr

∂xu
+

∑

i1,...,in∈Z

fri1...inu(x1, . . . , xk)y
i1
1 yi2

2 . . . yin
n = 0

1 ≤ r ≤ n, 1 ≤ u ≤ k

where fri1...inu are analytical functions. Moreover, suppose that there exist a neighbor-

hood U of (0, . . . , 0) such that all functions fri1...inu are regular in U . Let W be such

that the Laurent’s series in (3.1) converge for (y1, . . . , yn) ∈ W and (x1, . . . , xk) ∈ U .

Before we consider the compatibility conditions and the solution of the system (3.1),

we will introduce some notations.

If fri1...inu (1 ≤ r ≤ n, 1 ≤ u ≤ k, i1, . . . , in ∈ Z) are given functions of

x1, . . . , xk, then we define new functions hi1...inj1...jnu and Ri1...inj1...jnuv (i1, . . . , in,

j1, . . . , jn ∈ Z, 1 ≤ u, v ≤ k). First define

(3.2) hi1...inj1...jnu =
n

∑

s=1

isfs(j1−i1)...(js−is+1)...(jn−in)u.

Now we will prove the convergence of the series

∑

t1,...,tn∈Z

ht1...tnj1...jnvhi1...int1...tnu.

According to the definition (3.2), it is sufficient to prove the convergence of the series

∑

t1,...,tn∈Z

fp(j1−t1)...(jp−tp+1)...(jn−tn)v · fs(t1−i1)...(ts−is+1)...(tn−in)u.
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Indeed, it converges because that is the coefficient before

z
j1−i1
1 · · · zjs−is+1

s · · · zjp−ip+1
p · · · zjn−in

n

of the product of the Laurent’s series

∑

t1,...,tn∈Z

fp(j1−t1)...(jp−tp+1)...(jn−tn)v · z
j1−t1
1 · · · zjp−tp+1

p · · · zjn−tn
n

and
∑

t1,...,tn∈Z

fs(t1−i1)...(ts−is+1)...(tn−in)u · zt1−i1
1 · · · zts−is+1

s · · · ztn−in
n ,

which are convergent for (z1, . . . , zn) ∈ W . Now we can define

(3.3)

Ri1...inj1...jnuv =
∂

∂xu
hi1...inj1...jnv −

∂

∂xv
hi1...inj1...jnu+

+
∑

t1,...,tn∈Z

ht1...tnj1...jnvhi1...int1...tnu −
∑

t1,...,tn∈Z

ht1...tnj1...jnuhi1...int1...tnv.

Note that the series

∑

t1,...,tn∈Z

hi1...inj1...jnuy
j1
1 · · · yjn

n and Ri1...inj1...jnuvy
j1
1 · · · yjn

n

converge for (y1, . . . , yn) ∈ W and (x1, . . . , xk) ∈ U . In order to simplify the notations,

sometimes we will denote by the Greek indices α, β, γ, . . . a set of n integer indices

i1 . . . in; j1 . . . jn; . . . We will denote by {r} the set of n indices 0 . . . 010 . . . 0 where 1

appears at the r-th place. Now α + β and α − β are defined by

i1 . . . in ± j1 . . . jn = (i1 ± j1)(i2 ± j2) . . . (in ± jn).

Theorem 3.1. The quantities hαβu and Rαβuv satisfy the following properties:

(3.4) h(α+β)γu = hα(γ−β)u + hβ(γ−α)u,

(3.5) R(α+β)γuv = Rα(γ−β)uv + Rβ(γ−α)uv ,

(3.6) hαβu =
n

∑

s=1

ish{s}(β−α+{s})u,
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(3.7) Rαβuv =
n

∑

s=1

isR{s}(β−α+{s})uv ,

where α = i1 . . . in.

P r o o f. Using the definition (3.2) we obtain

hα(γ−β)u + hβ(γ−α)u =

= hi1...in(t1−j1)...(tn−jn)u + hj1...jn(t1−i1)...(tn−in)u =

=
n

∑

s=1

isfs(t1−j1−i1)...(tn−jn−in)u +
n

∑

s=1

jsfs(t1−i1−j1)...(tn−in−jn)u =

=
n

∑

s=1

(is + js)fs(t1−(i1+j1))...(tn−(in+jn))u =

= h(i1+j1)...(in+jn)t1...tnu = h(α+β)γu,

and the identity (3.4) is proved.

From the definition of Rλµuv, i.e.

Rλµuv =
∂

∂xu
hλµv −

∂

∂xv
hλµu +

∑

δ

hδµvhλδu −
∑

δ

hδµuhλδv

and the identity (3.4) we obtain

R(α+β)γuv =

=
∂

∂xu
hα(γ−β)v +

∂

∂xu
hβ(γ−α)v −

∂

∂xv
hα(γ−β)u −

∂

∂xv
hβ(γ−α)u+

+
∑

δ

hδγv(hα(δ−β)u + hβ(δ−α)u) −
∑

δ

hδγu(hα(δ−β)v + hβ(δ−α)v) =

=
∂

∂xu
hα(γ−β)v −

∂

∂xv
hα(γ−β)u +

∂

∂xu
hβ(γ−α)v −

∂

∂xv
hβ(γ−α)u+

+
∑

δ

(h(δ−β)(γ−β)v + hβ(γ−δ+β)v)hα(δ−β)u+

+
∑

δ

(h(δ−α)(γ−α)v + hα(γ−δ+α)v)hβ(δ−α)u−

−
∑

δ

(h(δ−β)(γ−β)u + hβ(γ−δ+β)u)hα(δ−β)v−
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−
∑

δ

(h(δ−α)(γ−α)u + hα(γ−δ+α)u)hβ(δ−α)v =

= Rα(γ−β)uv + Rβ(γ−α)uv +
∑

δ

hβ(γ−δ+β)vhα(δ−β)u+

+
∑

δ

hα(γ−δ+α)vhβ(δ−α)u −
∑

δ

hβ(γ−δ+β)uhα(δ−β)v−

−
∑

δ

hα(γ−δ+α)uhβ(δ−α)v = Rα(γ−β)uv + Rβ(γ−α)uv

because
∑

δ

hβ(γ−δ+β)vhα(δ−β)u =
∑

δ

hα(γ−δ+α)uhβ(δ−α)v

and
∑

δ

hα(γ−δ+α)vhβ(δ−α)u =
∑

δ

hβ(γ−δ+β)uhα(δ−β)v .

Hence the identity (3.5) is proved.

Finally, (3.6) and (3.7) are direct consequences of (3.4) and (3.5). Indeed, using

(3.4) and (3.5) one can verify that if (3.6) and (3.7) hold for the set of indices i1 . . . in,

then they also hold for the set of indices i1 . . . (is ± 1) . . . in for each s ∈ {1, . . . , n}.

We notice that (3.6) can be proved simpler as follows. From (3.2) it follows

h{r}j1...jnu = frj1...jnu

and now (3.6) is a consequence of (3.2).

Finally, we notice that (3.4) and (3.5) are also consequences of (3.6) and (3.7),

i.e.

(3.4) ⇔ (3.6) and (3.5) ⇔ (3.7). �

Now we are ready to give the main theorem.

Theorem 3.2. (i) The compatibility conditions for the system (3.1) for

arbitrary initial conditions yi(0, . . . , 0) = Ci, 1 ≤ i ≤ n, are

(3.8) Rαβuv ≡ 0 i .e. R{r}βuv ≡ 0.

(ii) If the compatibility conditions (3.8) are satisfied, then there exist functions

P
<w1,...,wk>
i1...inj1...jn

(x1, . . . , xk), w1, . . . , wn ∈ N0, i1, . . . , in, j1, . . . , jn ∈ Z
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in a neighborhood of (0, . . . , 0) such that

(3.9a) P
<0,...,0>
i1...inj1...jn

= δi1j1δi2j2 . . . δinjn ,

(3.9b)

P
<w1,...,wu+1,...,wk>
i1...inj1...jn

=
∂

∂xu
P

<w1,...,wk>
i1...inj1...jn

+

+
∑

t1,...,tn∈Z

(

n
∑

s=1

isfs(t1−i1)...(ts−is+1)...(tn−in)u

)

P
<w1,...,wk>
t1...tnj1...jn

.

If (C1, . . . , Cn) ∈ W , then the solution of (3.1) in a neighborhood of (0, . . . , 0) is given

by

y1 =
∑

w1,...,wk∈N0

[(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!

∑

j1,...,jn∈Z

P
<w1,...,wk>
10...0j1...jn

C
j1
1 · Cj2

2 · · ·Cjn
n

]

y2 =
∑

w1,...,wk∈N0

[(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!

∑

j1,...,jn∈Z

P
<w1,...,wk>
01...0j1...jn

C
j1
1 · Cj2

2 · · ·Cjn
n

]

(3.10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yn =
∑

w1,...,wk∈N0

[(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!

∑

j1,...,jn∈Z

P
<w1,...,wk>
0...01j1...jn

C
j1
1 · Cj2

2 · · ·Cjn
n

]

.

This solution is unique with the given initial conditions in a neighborhood of (0, . . . , 0).

P r o o f. Let us introduce the following functions

yα = yi1i2...in = yi1
1 · yi2

2 · · · yin
n , (i1, . . . , in ∈ Z)

such that y1 = y{1}, . . . , yn = y{n}. These functions satisfy

∂y{r}

∂xu
+

∑

α

frαuyα = 0 (1 ≤ r ≤ n, 1 ≤ u ≤ k)

and hence
∂yα

∂xu
=

∂

∂xu
(yi1

1 · yi2
2 · · · yin

n )

= i1yα−{1}
∂y1

∂xu
+ · · · + inyα−{n}

∂yn

∂xu
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= i1yα−{1}

(

−
∑

β

f1βuyβ

)

+ · · · + inyα−{n}

(

−
∑

β

fnβuyβ

)

= −i1
∑

β

f1βuyα+β−{1} − · · · − in
∑

β

fnβuyα+β−{n}

= −
n

∑

s=1

is
∑

β

fsβuyα+β−{s}

= −
n

∑

s=1

is
∑

γ

fs(γ−α+{s})uyγ , i.e.

(3.11)
∂

∂xu
yα +

∑

γ

hαγuyγ = 0

for α ∈ Z
n, u ∈ {1, . . . , k}.

Thus we obtain that the system (3.1) induces the system (3.11). The converse

also holds, i.e. one can prove that if the functions frαu are given, and

(i) the system (3.11) is satisfied, where hαγu are defined by (3.2),

(ii) yi1...in(0, . . . , 0) = Ci1
1 · Ci2

2 · · ·Cin
n (Ci are constants),

then the system (3.1) is satisfied, where yr = y{r} for 1 ≤ r ≤ n.

Similarly to the compatibility conditions for the system (2.1), the compatibility

conditions for the homogeneous linear system (3.11) are given by Rαβuv ≡ 0, i.e.

R{s}βuv ≡ 0, because (3.7) is satisfied. Hence, the compatibility conditions of (3.1)

are given by (3.8), and (i) is proved.

Similarly to the proof of Theorem 2.1, if the compatibility conditions (3.8) are

satisfied, then there exist functions

P
<w1,...,wk>
αβ (x1, . . . , xk), w1, . . . , wk ∈ N0, α, β ∈ Z

n

such that (3.9a,b) are satisfied. In order to prove that they are well defined, the

convergence in (3.9b) should be verified. It is easy to prove from (3.9a) and (3.9b) that

for each w1, . . . , wk ∈ N0 the series

∑

i1,...,in∈Z

P
<w1,...,wk>
i1...inj1...jn

z
j1−i1
1 · zj2−i2

2 · · · zjn−in
n

uniformly converge for (z1, . . . , zn) in a closed subset of W . The proof is by induction

of w1, . . . , wk and it is analogous to the proof of the convergence of
∑

γ

hγαvhβγu.



Solutions of Analytical Systems . . . 183

The convergency in (3.9b) follows simultaneously from here. Further by induction of

w1, . . . , wk it is also verified the uniform convergence of

∑

j1,...,jn∈Z

P
<w1,...,wk>
i1...inj1...jn

z
j1
1 · zj2

2 · · · zjn
n

for (z1, . . . , zn) in a closed subset of W . Moreover, for fixed i1, . . . , in there exist con-

stants Mi1...in in a neighborhood of the considered point, such that

∣

∣

∣

∣

∣

∣

∑

j1,...,jn∈Z

P
<w1,...,wk>
i1...inj1...jn

C
j1
1 · · ·Cjn

n ·
1

w1! · · ·wk!

∣

∣

∣

∣

∣

∣

≤ Mi1...in

for arbitrary w1, . . . , wn ∈ N0 and (C1, . . . , Cn) ∈ W . The proof follows from a formula

analogous to (2.9). Indeed, using the same notations as in the proof of the Theorem 2.1,

by induction of w1, . . . , wk ∈ N0, it is verified that

∣

∣

∣

∣

∣

∣

∑

β

Q
<w1,...,wk>
αβ

∑

γ

MβγC
j1
1 · · ·Cjn

n

∣

∣

∣

∣

∣

∣

≤ Nα (γ = j1 . . . jn)

where Nα do not depend on w1, . . . , wk, and where

Mβγ = max
a1,...,ak∈{0,1}

∣

∣

∣

∣

∣

∂w1−m1+...+wk−mk

∂xw1−m1
1 . . . ∂x

wk−mk

k

P
<a1,...,ak>
βγ

∣

∣

∣

∣

∣

·

·
ρw1−m1+···+wk−mk

(w1 − m1)! . . . (wk − mk)!
,

according to the Cauchy integral formula.

Similarly to the proof of Theorem 2.1, one can verify that the solution of (3.1)

with yi1...in(0, . . . , 0) = Ci1
1 · Ci2

2 . . . Cin
n is given by

yα =
∑

w1,...,wk∈N0





(−x1)
w1

w1!
· · ·

(−xk)
wk

wk!

∑

β

P
<w1,...,wk>
αβ C

j1
1 C

j2
2 . . . Cjn

n





where β = j1 . . . jn. Its convergence follows from the previous discussion. Especially, if

α ∈ {1}, . . . , α ∈ {n} we obtain the required solution (3.10).

Each solution of (3.1) is analytical function. On the other hand, by successive

differentiation of (3.1), we notice that all partial derivatives of ys can be calculated
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uniquely at (0, . . . , 0). Hence (3.1) does not have more than one solution in a neigh-

borhood of (0, . . . , 0), and the obtained solution is unique. �
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[2] K. Trenčevski. A formula for the k-th covariant derivative. Serdica, 15 (1989),

197-202.
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