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ABSTRACT. In this paper are examined some classes of linear and non-linear
analytical systems of partial differential equations. Compatibility conditions are
found and if they are satisfied, the solutions are given as functional series in a
neighborhood of a given point (z = 0).

1. Introduction. This paper is a continuation of the papers [2] — [5], and we
will give a brief view of them.

In the paper [2] it was found a formula for the k-th covariant derivative. Further
that formula was generalized for £k € R. Especially, if £ = —1 it yields to a general
solution for a system of linear differential equations [3]. In the paper [4] is given an
application of [3] for solving the Frenet equations. In [5] two main theorems are proved.
The first theorem gives the solution of an analytical non-homogeneous linear system of
differential equations of order k of n equations and n unknown functions. The second
theorem gives the solution of a non-linear analytical system of differential equations (of

the first order) of n equations and n unknown functions.
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compatibility conditions



172 K. Trencevski

In this paper we will prove two main theorems, considering linear and non-linear
systems of partial differential equations. Without loss of generality, we will find the
required solutions in a neighborhood of the point (0, ...,0). To the author’s knowledge
there are not similar results proved by other authors.

The results of this paper have applications in the differential geometry [6],
in studying the non-linear connections [1]. For example the compatibility conditions
in this paper are nothing but vanishing of the curvature tensor of the corresponding
connections. If the systems of partial differential equations considered in this paper are

tensor equations, then the obtained solutions also have tensor character.

2. Homogeneous system of linear partial differential equations. Let us

consider the following system

a n
(2.1) y”+Zfrsuys:0 1<r<n1<u<k)

Oy =
of unknown functions y1,...,y, of k variables x1,...,x; and f,s, are given analytical
functions of x1, ..., x, regular in a neighborhood of (0,...,0). In order to consider the

compatibility conditions, we introduce the following functions

aftsv aftsu . .
(22) Rtsuv = - + Z ftpufpsv - Z ftpvfpsu-
O0xy 0xy = =1

(1 <u,v<k1<t,s<n)
If (2.1) is an integrable system for arbitrary initial conditions, then using that

9 Oy, 0 Oy
Oy Oz, Oy Oxy

and the system (2.1), it is easy to obtain that
(23) Rtsuv =0

1 <wu,v <kand 1<t s <n. Conversely, it is known that if (2.3) are satisfied, then

the system (2.1) is integrable. Indeed this assertion also follows from the Theorem 2.1.

Theorem 2.1. Let the system (2.1) with the initial conditions ys(0,...,0) =

Cs (1 < s<n) be given and the compatibility conditions (2.3) be satisfied. Then there

wk>(

exist functions P;wl""’ Tlyeeo, Xg), Wi,...,wi € Ng and 1 <t,s <n, such that

(2.4a) P00> = 6y

S
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0
8xu

(2.4Db) P<w1’ swutlwe> <w17 7wk>_’_thpuP<Swl,---7’wk>

and the solution of (2.1) in a neighborhood of (0,...,0) is given by

= i i i i (_/j}l?wl . (_$2)WQ (_$k3wk .Priwl,...7wk>cs.
1!

(s
(2'5) s=1w;=0w2=0 wy,=0 wo! W
(1<r<n)
This solution is unique with the given initial conditions in a neighborhood of (0,...,0).

Proof. Let us suppose that the system (2.1) is given and the compatibility

conditions (2.3) are satisfied. In order to prove that there exist functions
PSR (g ) (wr, . wp € No, 1<ty s <)

such that (2.4a) and (2.4b) are satisfied, it is sufficient to prove that

(2‘6) P<w17 7w’t(1, )+17 W (1)+17 Sw P<'LU1, ,11)1(14)4,»17 LW (2)+17 SWES>
for each t,s € {1,...,n} and u,v € {1,...,k},u # v, where the notations (1) and (2)

show the order of the two increased indices. In fact

(2) (1) 0
1 1,... 1,...
Ptjwl, Wy +1wy 1w > P<w1, yWo+1,.we>

axu ts

<w, GWyt1,. L we>
+thpr ! v -

0 0
— D 5 Ptjwl, ,wk>+thqUP<w1, SWE> +
u v

n
<wi W > <WT ey WE >
+§ ftpu P ek + E fpavPas ek

and similarly

P<w17 7w2(1,)+17 (2)+17 SWE>
ts

0 0
= D 5 Ptjwh ,wk>+2ftqup<w1, W > +
v u
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4 Z fpauP<’w1, LW >

n
+ Z f tpv
p=1
Hence we obtain

Pt<wl""7w£2)+17"-)w£)1)+17---7wk> _ Pt<w17---7w£.1)+1"")w£)2)+17-"’wk> —
S S

— Z thuvp<w17 7wk>

and (2.6) is satisfied because thuv =0.

Now we should prove that the functions (y,) of (2.5) satisfy the system (2.1).
First we prove the uniform convergence of the right side of (2.5) in a neighborhood of
(0,...,0). We can consider analytical functions of complex variables. Suppose that

xr = (z1,...,x) is sufficiently close to (0,...,0) such that all functions {f,s,} are

< 1

regular in the disc D, = {z = (21,...,2;) : |z — 2| < p} and 0 € D,. Hence ‘E
p

Obviously, all functions Ps""""*> are regular in D,. In order to find an estimation

of Pk~ from (2.4a) and (2.4b), some additional results should be given. Let
D, (1 <u < k) be an operator defined by

n

0y
Y +Zfrsuys (1 <r< n)

0y,

(2.7) Dy, (yr) =

If the compatibility conditions (2.3) are satisfied, then similarly to the result in [2], it
holds

(DyloDy2 o0 DY) Z Z Z P>

mi1=0 mp=0s=1
(2.8)
ur—mittw -y wyl .. wy!
8xw1 mlaq;ém*mQ . 8,1'1]:’“7”% m1! - mk'(wl — ml)' - (wk — mk)'
Since Prjwl’ "R = (Do -0 Dy¥)6,; for fixed j, by putting y, = Pfjl’ "L we
obtain
<w1+1,...,wk+1> . <mi,...,m
P5 5 - Z > P
m1=0 mp=0s=1
Uizt wi! )
81;11”17”11 . agpgkimk 87 m1! - mk'(wl — ml)' - (wk — mk)‘

This equality is suitable for estimation of

P<wl,---,wk>‘
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<W15..,WE>
If Q<w1, Wk — 1) then
wi!- - wp!
WL 1> _ L S
Qr]wl yee Wi Z Z Z Q<m1’ S>>
' ' Hwi—mit-twg—my <l 1> 1
Pay T aa 0 (wn — )L (wg — mp)l
According to the Cauchy integral formula, it holds
(2 10) . Hwi—mit-Fwp—my <1...1> < M - (wl _ ml)! L. (wk — mk)l
' ST 0aTI g | T g

where M depends (continuously) only on z1, ..., xk.
Let ASWo%k> = max; ’Q<w1’ ’w’“>‘ Then (2.9) and (2.10) imply

1
A<w1+1,...,wk+1> < A<m1’ M
T - (w1 + 1) wk + 1 Z mg:o

nM

’ pw1 —mi4-tw—my

Now if p is sufficiently small such that nMp* < 1, then

AT<IU1+1,...,wk+1>p(’w1+1)+...+(wk+1) S

1 Z Z A<m1, M > m1+ erk

<
(w1+1) wk+]‘ m1=0 my=0

Moreover, we can suppose that instead of (2.10) it holds

g s M=) (g — )]
8xz;k—mk sj — pw17m1+-"+wk*mk

max | — —
s.J |0z .

ar € {0,1}, and p is such that nMp* < 1 for 1 < u <k. Now by

for each aq,...,
induction of k it is easy to verify that

Afml7---7mk>pm1+"'+mk < 1.
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Thus ) )
<W7I ey, WE >
wll...wk!PTj (@1, ap)| < prmatetmy?
and we have uniform convergence in (2.5) for |z1|,..., |zg| < (1—¢€)p. According to the
Weierstrass theorem, the functions y, are regular in a neighborhood of (0,...,0) and

we can differentiate them by parts.
If Cy,...,C, are arbitrary constants, using (2.5) and (2.4b) we obtain

Wyr (—z1)™ (—w)¥ ()™
8xu_z Z wy! =D (wy,, — 1! U we!l

s=1wi,...,wr€Np

'Pr<sw1,...,wk>cs_’_
n
(_xl)wl (_xk)wk 0 <wi,..., W >
TLX o ey e Cs

s=1 w1,...,wr€Np

Ly oy Lmmmg | omge
T weN, wi! Wy, wy,!
'Pr<swl""’w“+1""’wk>cs+
(zz)™ (a0

PSWihesWe> () —
wy! wy,! Oz, "° s

n
+>.
s=1lw,..,wpeNg

-y ¥ (=21) 1...<—ig .

wi!
s=lwy,...,wp€Np !

0

{péw1,---,wu+1,---,wk> _ o PT<S7-U17---,7-UI¢>:| C, =
u

n n
(—z)™ ()"
= — Z Z w | e w | Z pruPp§w17”'7wk>Cs e
s=lw,...,wpeNp L ko p=1

v - (=21)™ (=)™ cwy >

wi!
s=lw;,...,wp€Ng !

n
= - Z frpuy]n
p=1

i.e. (2.1) is satisfied. Moreover, using (2.4a) we obtain

yT‘(O7 e 70) — PT<SO7.“’O>CS - 57"308 - CT"



Solutions of Analytical Systems ... 177

To the end of the proof we have only to prove the uniqueness of the solution of
(2.1). Since the system (2.1) is linear, it is sufficient to prove that y5(0,...,0) =Cs =0
(1 < s <n)implies ys =0 (1 < s < n). Since the functions f,s, are analytical, each
solution of (2.1) is analytical. Using that ys(0,...,0) = 0, it follows from (2.1) that the
first partial derivatives of ys vanish at (0,...,0). By successive partial differentiations
of (2.1), all partial derivatives of y, vanish at (0,...,0). Hence ys(x1,...,25) =01in a
neighborhood of (0,...,0). O

3. Non-linear system of partial differential equations. Let us consider

the following non-linear system of partial differential equations

0
I B, kgt yn) =0 (1<r<n1<u<k).
0xy,
We suppose that F(z1,...,2%,y1,---,Ys) can be written in a Laurent’s series, i.e.
oYy

+ Y i@y Ryl =
ilv--')inGZ

(3.1) Ozu

1<r<n,1<u<k

where fr;, .. are analytical functions. Moreover, suppose that there exist a neighbor-
hood U of (0,...,0) such that all functions f,;,. 4, are regular in U. Let W be such
that the Laurent’s series in (3.1) converge for (y1,...,y,) € W and (x1,...,2x) € U.
Before we consider the compatibility conditions and the solution of the system (3.1),
we will introduce some notations.

If frivigu 1 <7r <mn, 1 <u<k, i,...,i, €Z) are given functions of
x1,...,%, then we define new functions hi, .. jou a0d R i jnuw (8155 in,
Jlseeosin €2, 1 <wu,v < k). First define

n

(3.2) Riy.oingignu = Z Us fs(j1—i1) (s —is+1)er(Gin—in)u-

s=1

Now we will prove the convergence of the series

E htl...tnjl...jnvh’i1...’intl...tnU'
t1,...,tn€Z

According to the definition (3.2), it is sufficient to prove the convergence of the series

D ot Gotpt )it Fstr—in)o(ts—ia 1) (b i)
t1,..,tn€ZL
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Indeed, it converges because that is the coefficient before

fimin | ge—isHl || dp—iptl .| jn—in
2] zy 2z, ;)

of the product of the Laurent’s series

Do Toli—t) o tot Delia—ta)o * A

1=t gp—tptl | dn—t
pr D Znn n

tl,...,tnEZ
and
t1—iy ts—is+1 b —i
Z Js(tr—i1)e(ts—is 1) (tn—in)u * 21 ez T ezt T,
tl,...,tnEZ
which are convergent for (z1,...,2,) € W. Now we can define
0 0
Riy ingrenuw = oz, Riy g gnv — oz, hiy g gnut
(3.3)
+ Z htl...tnj1...jn'uhil...int1...tnu - Z htl...tnjl...jnuhi1...intl...tnv'
t1,.tn€Z t1,.tn€Z

Note that the series

RN & R | JU. a0
Z iy iy .. jnu¥l Yn' and Ri\ inji.juuo¥i Yn"
t1,etn€Z

converge for (y1,...,y,) € W and (z1,...,2%) € U. In order to simplify the notations,
sometimes we will denote by the Greek indices «, 3,7,... a set of n integer indices
1. in; J1---Jn; --. We will denote by {r} the set of n indices 0...010...0 where 1
appears at the r-th place. Now a + 3 and o — 3 are defined by

i1.tn £ 1. gn = (11 £71)(G2 £ 72) ... (in £ jn).
Theorem 3.1. The quantities hopg, and Ropgy, satisfy the following properties:

(3.4) Mot pyyu = haty-gyu + hpt-ayu,

(3:5) RiatByyuw = LRa(y—pyuw + a(v—ajuv:

n
(3.6) hapu =D ish{s}(5—a+{shu:
s=1
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(3.7) Raguv = ) isRis} (5t {s}uvs
s=1
where o« = i1 . . .1y

Proof. Using the definition (3.2) we obtain
ha(y—pyu + Rs(r-ayu
= Ry it —g1)e (=) T Mgt —in) . (tn—in)u =

—Zzsfs (t1—J1—11)---(tn—Jn—in)u +Z]sfs(t1 —i1—751)-(tn —in—3jn)u

s=1
n
Z (i + Jis) fs(tr—(ir+31))- (b (i )

= iy 1) (in+in)tr ot = PatB)yus
and the identity (3.4) is proved.

From the definition of Ry, i.e.

0 0
Rkuuv = %h)\,wu - a—xvh)\,uu + Z hé;wh)\éu - Z héuuh)\év
w 1) 1)

and the identity (3.4) we obtain

R(atp)yun =

= a—:ruha(’y_ﬂ)v + a—xuhﬂ(w_a)v - a—:rvha(,y_ﬂ)u — a—%h,@('\{—a)u+

+Zh5w a(6-B)u T hg—ayu Zh&yu a@—p) T hsG—aw) =

0 0 0 0

= 8—%ho¢('yfﬁ)v - a—%ha('yfﬁ)u + 8—%hﬁ(’yfa)v — a—%h‘ﬁ('yfa)u"i'

+ D (h6-B)(v—ayw + hpr-6+8y0) ha(-gut
)

+ Z(h‘(éfa)('yfa)v + ha('nyJra)v)hﬂ(&fa)u_
)

= > (h(5-8)(v—Byu + hp(y—o18yu) Pa(s—pyo—
)
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- Z(h(é—a)(w—a)u + ha('y—&—l—a)u)h,@(é—a)v =
4

= Ro(y—gyuw + Ratr—ayuw + D Paty—stpylats—put
)

+Zhw+auhﬁaau Zhﬁ'y s+8)ulae—pyw—

= haty—staplp6-ayw = Ratr—gyuw + Roy—ayu
)

because

Y hst—s48)whap-gu = P Pay—s+ayulsE—aw
) )

and

Y hay—stapwlaE-oau = Y hae-stpula—sp-
) )

Hence the identity (3.5) is proved.
Finally, (3.6) and (3.7) are direct consequences of (3.4) and (3.5). Indeed, using
(3.4) and (3.5) one can verify that if (3.6) and (3.7) hold for the set of indices i; ... iy,
then they also hold for the set of indices i1 ...(is +1)...4, for each s € {1,...,n}.
We notice that (3.6) can be proved simpler as follows. From (3.2) it follows

h{r}ﬂljnu = fT]ljnu

and now (3.6) is a consequence of (3.2).
Finally, we notice that (3.4) and (3.5) are also consequences of (3.6) and (3.7),
ie.
(3.4) < (3.6) and (3.5) & (3.7). O

Now we are ready to give the main theorem.

Theorem 3.2. (i) The compatibility conditions for the system (3.1) for
arbitrary initial conditions y;(0,...,0) = C;, 1 <i < n, are

(3.8) Ra@uv =0 i.€e. R{r},@uv =0.

(i) If the compatibility conditions (3.8) are satisfied, then there exist functions

<Wi,..WE> . . . .
P (@, ), wi Wy € Noyin, .y ing Jiy - € Z
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in a neighborhood of (0,...,0) such that

<07"'70> — . . . . . .
(3.92) Pz‘l...z‘nj1...jn = 0i1j10i0ja - Oiyjns
<wp, o> O p<wn >
21...2 21...2
1---tnJji---Jn 8xu 1---tnJj1.--Jn
(3.9b) .

Y (X S sttittemiet)tin) P

tlv"'vtnEZ s=1

If (C1,...,Cy) € W, then the solution of (3.1) in a neighborhood of (0,...,0) is given
by

(_le)wl (_ij)wk LW yeryWES> ] J in
T L= . S e e e
Wy N wy: W 7
1.+, WEE€No J15e5In€
(—z1)" (—z)"" <W1 4y WE> ~F j ]
(3.10) w2 = > [ ol | > Batgiro C%Q‘“C%"}
w wi €N, L Wk 15eeesjn €L
1, WEk 0 J1ye-In
(—z)"™ (=)™ W0 > g1 1] n
Yn = Z [ T ] Z PO...Olljl...]kn Cit -Gy Oy }
wi: Wi+ . -
w1, wrENg J1s-Jn€L
This solution is unique with the given initial conditions in a neighborhood of (0, ...,0).
Proof. Let us introduce the following functions
Yo = Yirigein = Y1 Y5 Y, (i1, in €Z)

such that y1 = y1},. .., Yn = y{n). These functions satisty

Yy
0xy,

+Zfrauya:0 1<r<mn1<u<k)

«

and hence
Yo _ 9

u u

. 0 . Oyn
= 11Ya—{1} 8? +oe Znyaf{n}a%
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= 1Ya—{1} (— > flﬁuyﬂ) + -t Yo {n) (— > fnﬁuyﬁ)
B B

=—i Z flﬁuyoﬂrﬁf{l} — e —ip Z fnﬁuyoﬂrﬁ*{n}
B B

n

= - Z is Z fsﬁuyaJrﬁf{s}
s=1 J6]

n

== i) fsr—atishuby, e
s=1

y

)
(3.11) 5 Yo T > hayuyy =0
w ol

foraeZ" ue{l,..., k}.

Thus we obtain that the system (3.1) induces the system (3.11). The converse
also holds, i.e. one can prove that if the functions f,., are given, and

(i) the system (3.11) is satisfied, where hqo,, are defined by (3.2),

(i) %i,..4, (0,...,0) = Ci* . CL2 ... Clin (C; are constants),
then the system (3.1) is satisfied, where y, = y,) for 1 <r < n.

Similarly to the compatibility conditions for the system (2.1), the compatibility
conditions for the homogeneous linear system (3.11) are given by R,gu, = 0, ie.
Rigypuw = 0, because (3.7) is satisfied. Hence, the compatibility conditions of (3.1)
are given by (3.8), and (i) is proved.

Similarly to the proof of Theorem 2.1, if the compatibility conditions (3.8) are

satisfied, then there exist functions
P;ﬁwl""’wk>(x1, cey T), wy,...,wg € Ng,a, 3 € Z"

such that (3.9a,b) are satisfied. In order to prove that they are well defined, the
convergence in (3.9b) should be verified. It is easy to prove from (3.9a) and (3.9b) that
for each wq,...,w, € Ny the series
S RS e
ilv--')inGZ
uniformly converge for (z1,...,2,) in a closed subset of W. The proof is by induction

of wy,...,wg and it is analogous to the proof of the convergence of Zhvavhﬁvw
v



Solutions of Analytical Systems ... 183

The convergency in (3.9b) follows simultaneously from here. Further by induction of
w1, ..., Wy it is also verified the uniform convergence of
<wi,.,wE> g1 g2 Jn
Z PZl dAnflejn F1 TF2 T 20
jlv"'vanZ
for (z1,...,2,) in a closed subset of W. Moreover, for fixed i1, ..., there exist con-

stants M;, ;, in a neighborhood of the considered point, such that

, 1
<W1,. 0 WE> ~JL | Vin | L
Z le AnJ1---Jn C Cn w1| L. wk' S MZl---Zn
j17"'7jn€Z ) ’
for arbitrary wy,...,w, € Ng and (Cy,...,C,) € W. The proof follows from a formula

analogous to (2.9). Indeed, using the same notations as in the proof of the Theorem 2.1,

by induction of w1, ..., w; € Ny, it is verified that

ZQ<w1, 7w}€>ZMﬂ70{I C%” < N, (’Y =N ]n)
0l

where N, do not depend on wq,...,wg, and where

8w17m1+...+wk7mk e ap>
Mg, = max Py .
y —
a17"'7ak€{071} a$111)1 M1 8xwk Mk /B’Y

pw17m1+---+wk7mk

(w1 — ml)! N (wk — mk)!7
according to the Cauchy integral formula.

Similarly to the proof of Theorem 2.1, one can verify that the solution of (3.1)
with s, 4, (0,...,0) = Ci* - C2 ... Cin is given by

—xq )@ — )W o ,
Yo = Z ( w13 e ( wk? Z P;ﬁwl’ 7wk>0{1 C%Q o Cgln
wl,...,wkENo ’ ’ ﬁ

where 8 = j1...jn. Its convergence follows from the previous discussion. Especially, if
a € {1},...,a € {n} we obtain the required solution (3.10).
Each solution of (3.1) is analytical function. On the other hand, by successive

differentiation of (3.1), we notice that all partial derivatives of ys can be calculated
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uniquely at (0,...,0). Hence (3.1) does not have more than one solution in a neigh-

borhood of (0,...,0), and the obtained solution is unique. O
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