Serdica
 Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

SOLUTIONS OF ANALYTICAL SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

K. Trenčevski
Communicated by I. D. Iliev

Abstract

In this paper are examined some classes of linear and non-linear analytical systems of partial differential equations. Compatibility conditions are found and if they are satisfied, the solutions are given as functional series in a neighborhood of a given point $(x=0)$.

1. Introduction. This paper is a continuation of the papers [2] - [5], and we will give a brief view of them.

In the paper [2] it was found a formula for the k-th covariant derivative. Further that formula was generalized for $k \in \mathbb{R}$. Especially, if $k=-1$ it yields to a general solution for a system of linear differential equations [3]. In the paper [4] is given an application of [3] for solving the Frenet equations. In [5] two main theorems are proved. The first theorem gives the solution of an analytical non-homogeneous linear system of differential equations of order k of n equations and n unknown functions. The second theorem gives the solution of a non-linear analytical system of differential equations (of the first order) of n equations and n unknown functions.

[^0]In this paper we will prove two main theorems, considering linear and non-linear systems of partial differential equations. Without loss of generality, we will find the required solutions in a neighborhood of the point $(0, \ldots, 0)$. To the author's knowledge there are not similar results proved by other authors.

The results of this paper have applications in the differential geometry [6], in studying the non-linear connections [1]. For example the compatibility conditions in this paper are nothing but vanishing of the curvature tensor of the corresponding connections. If the systems of partial differential equations considered in this paper are tensor equations, then the obtained solutions also have tensor character.
2. Homogeneous system of linear partial differential equations. Let us consider the following system

$$
\begin{equation*}
\frac{\partial y_{r}}{\partial x_{u}}+\sum_{s=1}^{n} f_{r s u} y_{s}=0 \quad(1 \leq r \leq n, 1 \leq u \leq k) \tag{2.1}
\end{equation*}
$$

of unknown functions y_{1}, \ldots, y_{n} of k variables x_{1}, \ldots, x_{k} and $f_{r s u}$ are given analytical functions of x_{1}, \ldots, x_{k}, regular in a neighborhood of $(0, \ldots, 0)$. In order to consider the compatibility conditions, we introduce the following functions

$$
\begin{gather*}
R_{t s u v}=\frac{\partial f_{t s v}}{\partial x_{u}}-\frac{\partial f_{t s u}}{\partial x_{v}}+\sum_{p=1}^{n} f_{t p u} f_{p s v}-\sum_{p=1}^{n} f_{t p v} f_{p s u} \tag{2.2}\\
(1 \leq u, v \leq k, 1 \leq t, s \leq n)
\end{gather*}
$$

If (2.1) is an integrable system for arbitrary initial conditions, then using that

$$
\frac{\partial}{\partial x_{v}} \frac{\partial y_{r}}{\partial x_{u}}=\frac{\partial}{\partial x_{u}} \frac{\partial y_{r}}{\partial x_{v}}
$$

and the system (2.1), it is easy to obtain that

$$
\begin{equation*}
R_{t s u v} \equiv 0 \tag{2.3}
\end{equation*}
$$

$1 \leq u, v \leq k$ and $1 \leq t, s \leq \mathrm{n}$. Conversely, it is known that if (2.3) are satisfied, then the system (2.1) is integrable. Indeed this assertion also follows from the Theorem 2.1.

Theorem 2.1. Let the system (2.1) with the initial conditions $y_{s}(0, \ldots, 0)=$ $C_{s}(1 \leq s \leq n)$ be given and the compatibility conditions (2.3) be satisfied. Then there exist functions $P_{t s}^{<w_{1}, \ldots, w_{k}>}\left(x_{1}, \ldots, x_{k}\right), w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}$ and $1 \leq t, s \leq n$, such that

$$
\begin{equation*}
P_{t s}^{<0, \ldots, 0>}=\delta_{t s} \tag{2.4a}
\end{equation*}
$$

$$
\begin{equation*}
P_{t s}^{<w_{1}, \ldots, w_{u}+1, \ldots, w_{k}>}=\frac{\partial}{\partial x_{u}} P_{t s}^{<w_{1}, \ldots, w_{k}>}+\sum_{p=1}^{n} f_{t p u} P_{p s}^{<w_{1}, \ldots, w_{k}>} \tag{2.4b}
\end{equation*}
$$

and the solution of (2.1) in a neighborhood of $(0, \ldots, 0)$ is given by

$$
\begin{gather*}
y_{r}=\sum_{s=1}^{n} \sum_{w_{1}=0}^{\infty} \sum_{w_{2}=0}^{\infty} \cdots \sum_{w_{k}=0}^{\infty} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdot \frac{\left(-x_{2}\right)^{w_{2}}}{w_{2}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \cdot P_{r s}^{<w_{1}, \ldots, w_{k}>} C_{s} . \tag{2.5}\\
(1 \leq r \leq n)
\end{gather*}
$$

This solution is unique with the given initial conditions in a neighborhood of $(0, \ldots, 0)$.

Proof. Let us suppose that the system (2.1) is given and the compatibility conditions (2.3) are satisfied. In order to prove that there exist functions

$$
P_{t s}^{<w_{1}, \ldots, w_{k}>}\left(x_{1}, \ldots, x_{k}\right) \quad\left(w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}, 1 \leq t, s \leq n\right)
$$

such that (2.4a) and (2.4b) are satisfied, it is sufficient to prove that

$$
\begin{equation*}
P_{t s}^{<w_{1}, \ldots, w_{u}^{(2)}+1, \ldots, w_{v}^{(1)}+1, \ldots, w_{k}>}=P_{t s}^{<w_{1}, \ldots, w_{u}^{(1)}+1, \ldots, w_{v}^{(2)}+1, \ldots, w_{k}>} \tag{2.6}
\end{equation*}
$$

for each $t, s \in\{1, \ldots, n\}$ and $u, v \in\{1, \ldots, k\}, u \neq v$, where the notations (1) and (2) show the order of the two increased indices. In fact

$$
\begin{gathered}
P_{t s}^{<w_{1}, \ldots, w_{u}^{(2)}+1, \ldots, w_{v}^{(1)}+1, \ldots, w_{k}>}=\frac{\partial}{\partial x_{u}} P_{t s}^{<w_{1}, \ldots, w_{v}+1, \ldots, w_{k}>}+ \\
+\sum_{p=1}^{n} f_{t p r} P_{p s}^{<w_{1}, \ldots, w_{v}+1, \ldots, w_{k}>}= \\
=\frac{\partial}{\partial x_{u}}\left[\frac{\partial}{\partial x_{v}} P_{t s}^{<w_{1}, \ldots, w_{k}>}+\sum_{q=1}^{n} f_{t q v} P_{q s}^{\left.<w_{1}, \ldots, w_{k}>\right]+}\right. \\
+\sum_{p=1}^{n} f_{t p u}\left[\frac{\partial}{\partial x_{v}} P_{p s}^{<w_{1}, \ldots, w_{k}>}+\sum_{a=1}^{n} f_{p a v} P_{a s}^{<w_{1}, \ldots, w_{k}>}\right]
\end{gathered}
$$

and similarly

$$
\begin{gathered}
P_{t s}^{<w_{1}, \ldots, w_{u}^{(1)}+1, \ldots, w_{v}^{(2)}+1, \ldots, w_{k}>}= \\
=\frac{\partial}{\partial x_{v}}\left[\frac{\partial}{\partial x_{u}} P_{t s}^{<w_{1}, \ldots, w_{k}>}+\sum_{q=1}^{n} f_{t q u} P_{q s}^{<w_{1}, \ldots, w_{k}>}\right]+
\end{gathered}
$$

$$
+\sum_{p=1}^{n} f_{t p v}\left[\frac{\partial}{\partial x_{u}} P_{p s}^{<w_{1}, \ldots, w_{k}>}+\sum_{a=1}^{n} f_{p a u} P_{a s}^{<w_{1}, \ldots, w_{k}>}\right] .
$$

Hence we obtain

$$
\begin{aligned}
& P_{t s}^{<w_{1}, \ldots, w_{u}^{(2)}+1, \ldots, w_{v}^{(1)}+1, \ldots, w_{k}>}-P_{t s}^{<w_{1}, \ldots, w_{u}^{(1)}+1, \ldots, w_{v}^{(2)}+1, \ldots, w_{k}>}= \\
&=\sum_{q=1}^{n} R_{t q u v} P_{q s}^{<w_{1}, \ldots, w_{k}>}
\end{aligned}
$$

and (2.6) is satisfied because $R_{t q u v} \equiv 0$.
Now we should prove that the functions $\left(y_{r}\right)$ of (2.5) satisfy the system (2.1). First we prove the uniform convergence of the right side of (2.5) in a neighborhood of $(0, \ldots, 0)$. We can consider analytical functions of complex variables. Suppose that $x=\left(x_{1}, \ldots, x_{k}\right)$ is sufficiently close to $(0, \ldots, 0)$ such that all functions $\left\{f_{r s u}\right\}$ are regular in the disc $D_{x}=\left\{z=\left(z_{1}, \ldots, z_{k}\right):|z-x|<\rho\right\}$ and $0 \in D_{x}$. Hence $\left|\frac{x}{\rho}\right|<1$. Obviously, all functions $P_{t s}^{<w_{1}, \ldots, w_{k>}}$ are regular in D_{x}. In order to find an estimation of $P_{t s}^{<w_{1}, \ldots, w_{k}>}$ from (2.4a) and (2.4b), some additional results should be given. Let $D_{x_{u}}(1 \leq u \leq k)$ be an operator defined by

$$
\begin{equation*}
D_{x_{u}}\left(y_{r}\right)=\frac{\partial y_{r}}{\partial x_{u}}+\sum_{s=1}^{n} f_{r s u} y_{s} \quad(1 \leq r \leq n) \tag{2.7}
\end{equation*}
$$

If the compatibility conditions (2.3) are satisfied, then similarly to the result in [2], it holds

$$
\begin{gather*}
\left(D_{x_{1}}^{w_{1}} \circ D_{x_{2}}^{w_{2}} \circ \cdots \circ D_{x_{k}}^{w_{k}}\right)\left(y_{r}\right)=\sum_{m_{1}=0}^{w_{1}} \ldots \sum_{m_{k}=0}^{w_{k}} \sum_{s=1}^{n} P_{r s}^{<m_{1}, \ldots, m_{k}>} \tag{2.8}\\
\cdot \frac{\partial^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}} y_{s}}{\partial x_{1}^{w_{1}-m_{1}} \partial x_{2}^{w_{2}-m_{2}} \ldots \partial x_{k}^{w_{k}-m_{k}}} \cdot \frac{w_{1}!\ldots w_{k}!}{m_{1}!\ldots m_{k}!\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!}
\end{gather*}
$$

Since $P_{r j}^{<w_{1}, \ldots, w_{k}>}=\left(D_{x_{1}}^{w_{1}} \circ \cdots \circ D_{x_{k}}^{w_{k}}\right) \delta_{r j}$ for fixed j, by putting $y_{r}=P_{r j}^{<1, \ldots, 1>}$, we obtain

$$
\begin{gathered}
P_{r j}^{<w_{1}+1, \ldots, w_{k}+1>}=\sum_{m_{1}=0}^{w_{1}} \ldots \sum_{m_{k}=0}^{w_{k}} \sum_{s=1}^{n} P_{r s}^{<m_{1}, \ldots, m_{k}>} \\
{\left[\frac{\partial^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}{\partial x_{1}^{w_{1}-m_{1}} \ldots \partial x_{k}^{w_{k}-m_{k}}} P_{s j}^{<1, \ldots, 1>}\right] \frac{w_{1}!\ldots w_{k}!}{m_{1}!\ldots m_{k}!\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!} .}
\end{gathered}
$$

This equality is suitable for estimation of $\left|P_{r j}^{\left.<w_{1}, \ldots, w_{k}\right\rangle}\right|$.

If $Q_{r j}^{<w_{1}, \ldots, w_{k}>}=\frac{P_{r j}^{<w_{1}, \ldots, w_{k}>}}{w_{1}!\cdots w_{k}!}$, then

$$
\begin{gather*}
Q_{r j}^{<w_{1}+1, \ldots, w_{k}+1>}=\frac{1}{\left(w_{1}+1\right) \cdots\left(w_{k}+1\right)} \sum_{m_{1}=0}^{w_{1}} \ldots \sum_{m_{k}=0}^{w_{k}} \sum_{s=1}^{n} Q_{r s}^{<m_{1}, \ldots, m_{k}>} . \tag{2.9}\\
\cdot \frac{\partial^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}{\partial x_{1}^{w_{1}-m_{1}} \ldots \partial x_{k}^{w_{k}-m_{k}}} P_{s j}^{<1, \ldots, 1>} \frac{1}{\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!} .
\end{gather*}
$$

According to the Cauchy integral formula, it holds

$$
\begin{equation*}
\max _{s, j}\left|\frac{\partial^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}{\partial x_{1}^{w_{1}-m_{1}} \ldots \partial x_{k}^{w_{k}-m_{k}}} P_{s j}^{<1, \ldots, 1>}\right| \leq \frac{M \cdot\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!}{\rho^{w_{1}-m_{1}+\ldots+w_{k}-m_{k}}}, \tag{2.10}
\end{equation*}
$$

where M depends (continuously) only on x_{1}, \ldots, x_{k}.
Let $A_{r}^{<w_{1}, \ldots, w_{k}>}=\max _{j}\left|Q_{r j}^{<w_{1}, \ldots, w_{k}>}\right|$. Then (2.9) and (2.10) imply

$$
\begin{gathered}
A_{r}^{<w_{1}+1, \ldots, w_{k}+1>} \leq \frac{1}{\left(w_{1}+1\right) \cdots\left(w_{k}+1\right)} \sum_{m_{1}=0}^{w_{1}} \ldots \sum_{m_{k}=0}^{w_{k}} A_{r}^{<m_{1}, \ldots, m_{k}>} \\
\cdot \frac{n M}{\rho^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}
\end{gathered}
$$

Now if ρ is sufficiently small such that $n M \rho^{k} \leq 1$, then

$$
\begin{gathered}
A_{r}^{<w_{1}+1, \ldots, w_{k}+1>} \rho^{\left(w_{1}+1\right)+\ldots+\left(w_{k}+1\right)} \leq \\
\leq \frac{1}{\left(w_{1}+1\right) \cdots\left(w_{k}+1\right)} \sum_{m_{1}=0}^{w_{1}} \ldots \sum_{m_{k}=0}^{w_{k}} A_{r}^{<m_{1}, \ldots, m_{k}>} \rho^{m_{1}+\ldots+m_{k}} .
\end{gathered}
$$

Moreover, we can suppose that instead of (2.10) it holds

$$
\max _{s, j}\left|\frac{\partial^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}{\partial x_{1}^{w_{1}-m_{1}} \ldots \partial x_{k}^{w_{k}-m_{k}}} P_{s j}^{<a_{1}, \ldots, a_{k}>}\right| \leq \frac{M\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!}{\rho^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}
$$

for each $a_{1}, \ldots, a_{k} \in\{0,1\}$, and ρ is such that $n M \rho^{u} \leq 1$ for $1 \leq u \leq \mathrm{k}$. Now by induction of k it is easy to verify that

$$
A_{r}^{<m_{1}, \ldots, m_{k}>} \rho^{m_{1}+\cdots+m_{k}} \leq 1
$$

Thus

$$
\left|\frac{1}{w_{1}!\cdots w_{k}!} P_{r j}^{<w_{1}, \ldots, w_{k}>}\left(x_{1}, \ldots, x_{k}\right)\right| \leq \frac{1}{\rho^{m_{1}+\ldots+m_{k}}}
$$

and we have uniform convergence in (2.5) for $\left|x_{1}\right|, \ldots,\left|x_{k}\right| \leq(1-\epsilon) \rho$. According to the Weierstrass theorem, the functions y_{r} are regular in a neighborhood of $(0, \ldots, 0)$ and we can differentiate them by parts.

If C_{1}, \ldots, C_{n} are arbitrary constants, using (2.5) and (2.4b) we obtain

$$
\begin{aligned}
& \frac{\partial y_{r}}{\partial x_{u}}=\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots(-1) \frac{\left(-x_{u}\right)^{w_{u}-1}}{\left(w_{u}-1\right)!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} . \\
& \text { - } P_{r s}^{<w_{1}, \ldots, w_{k}>} C_{s}+ \\
& +\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \cdot \frac{\partial}{\partial x_{u}} P_{r s}^{<w_{1}, \ldots, w_{k}>} C_{s} \\
& =-\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{u}\right)^{w_{u}}}{w_{u}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} . \\
& \cdot P_{r s}^{<w_{1}, \ldots, w_{u+1}, \ldots, w_{k}>} C_{s}+ \\
& +\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \cdot \frac{\partial}{\partial x_{u}} P_{r s}^{<w_{1}, \ldots, w_{k}>} C_{s}= \\
& =-\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} . \\
& {\left[P_{r s}^{<w_{1}, \ldots, w_{u}+1, \ldots, w_{k}>}-\frac{\partial}{\partial x_{u}} P_{r s}^{<w_{1}, \ldots, w_{k}>}\right] C_{s}=} \\
& =-\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \sum_{p=1}^{n} f_{r p u} P_{p s}^{<w_{1}, \ldots, w_{k}>} C_{s}= \\
& =-\sum_{p=1}^{n} f_{r p u}\left[\sum_{s=1}^{n} \sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}} \frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} P_{p s}^{<w_{1}, \ldots, w_{k}>} C_{s}\right] \\
& =-\sum_{p=1}^{n} f_{r p u} y_{p},
\end{aligned}
$$

i.e. (2.1) is satisfied. Moreover, using (2.4a) we obtain

$$
y_{r}(0, \ldots, 0)=P_{r s}^{<0, \ldots, 0>} C_{s}=\delta_{r s} C_{s}=C_{r} .
$$

To the end of the proof we have only to prove the uniqueness of the solution of (2.1). Since the system (2.1) is linear, it is sufficient to prove that $y_{s}(0, \ldots, 0)=C_{s}=0$ $(1 \leq s \leq n)$ implies $y_{s}=0(1 \leq s \leq n)$. Since the functions $f_{r s u}$ are analytical, each solution of (2.1) is analytical. Using that $y_{s}(0, \ldots, 0)=0$, it follows from (2.1) that the first partial derivatives of y_{s} vanish at $(0, \ldots, 0)$. By successive partial differentiations of (2.1), all partial derivatives of y_{s} vanish at $(0, \ldots, 0)$. Hence $y_{s}\left(x_{1}, \ldots, x_{k}\right)=0$ in a neighborhood of $(0, \ldots, 0)$.
3. Non-linear system of partial differential equations. Let us consider the following non-linear system of partial differential equations

$$
\frac{\partial y_{r}}{\partial x_{u}}+F\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)=0 \quad(1 \leq r \leq n, 1 \leq u \leq k)
$$

We suppose that $F\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right)$ can be written in a Laurent's series, i.e.

$$
\begin{equation*}
\frac{\partial y_{r}}{\partial x_{u}}+\sum_{i_{1}, \ldots, i_{n} \in \mathbb{Z}} f_{r i_{1} \ldots i_{n} u}\left(x_{1}, \ldots, x_{k}\right) y_{1}^{i_{1}} y_{2}^{i_{2}} \ldots y_{n}^{i_{n}}=0 \tag{3.1}
\end{equation*}
$$

$$
1 \leq r \leq n, 1 \leq u \leq k
$$

where $f_{r i_{1} \ldots i_{n} u}$ are analytical functions. Moreover, suppose that there exist a neighborhood U of $(0, \ldots, 0)$ such that all functions $f_{r i_{1} \ldots i_{n} u}$ are regular in U. Let W be such that the Laurent's series in (3.1) converge for $\left(y_{1}, \ldots, y_{n}\right) \in W$ and $\left(x_{1}, \ldots, x_{k}\right) \in U$. Before we consider the compatibility conditions and the solution of the system (3.1), we will introduce some notations.

If $f_{r i_{1} \ldots i_{n} u}\left(1 \leq r \leq n, 1 \leq u \leq k, i_{1}, \ldots, i_{n} \in \mathbb{Z}\right)$ are given functions of x_{1}, \ldots, x_{k}, then we define new functions $h_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u}$ and $R_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u v}\left(i_{1}, \ldots, i_{n}\right.$, $\left.j_{1}, \ldots, j_{n} \in \mathbb{Z}, 1 \leq u, v \leq k\right)$. First define

$$
\begin{equation*}
h_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u}=\sum_{s=1}^{n} i_{s} f_{s\left(j_{1}-i_{1}\right) \ldots\left(j_{s}-i_{s}+1\right) \ldots\left(j_{n}-i_{n}\right) u} . \tag{3.2}
\end{equation*}
$$

Now we will prove the convergence of the series

$$
\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} h_{t_{1} \ldots t_{n} j_{1} \ldots j_{n} v} h_{i_{1} \ldots i_{n} t_{1} \ldots t_{n} u}
$$

According to the definition (3.2), it is sufficient to prove the convergence of the series

$$
\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} f_{p\left(j_{1}-t_{1}\right) \ldots\left(j_{p}-t_{p}+1\right) \ldots\left(j_{n}-t_{n}\right) v} \cdot f_{s\left(t_{1}-i_{1}\right) \ldots\left(t_{s}-i_{s}+1\right) \ldots\left(t_{n}-i_{n}\right) u}
$$

Indeed, it converges because that is the coefficient before

$$
z_{1}^{j_{1}-i_{1}} \cdots z_{s}^{j_{s}-i_{s}+1} \cdots z_{p}^{j_{p}-i_{p}+1} \cdots z_{n}^{j_{n}-i_{n}}
$$

of the product of the Laurent's series

$$
\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} f_{p\left(j_{1}-t_{1}\right) \ldots\left(j_{p}-t_{p}+1\right) \ldots\left(j_{n}-t_{n}\right) v} \cdot z_{1}^{j_{1}-t_{1}} \cdots z_{p}^{j_{p}-t_{p}+1} \cdots z_{n}^{j_{n}-t_{n}}
$$

and

$$
\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} f_{s\left(t_{1}-i_{1}\right) \ldots\left(t_{s}-i_{s}+1\right) \ldots\left(t_{n}-i_{n}\right) u} \cdot z_{1}^{t_{1}-i_{1}} \cdots z_{s}^{t_{s}-i_{s}+1} \cdots z_{n}^{t_{n}-i_{n}}
$$

which are convergent for $\left(z_{1}, \ldots, z_{n}\right) \in W$. Now we can define

$$
\begin{gather*}
R_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u v}=\frac{\partial}{\partial x_{u}} h_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} v}-\frac{\partial}{\partial x_{v}} h_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u}+ \\
+\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} h_{t_{1} \ldots t_{n} j_{1} \ldots j_{n} v} h_{i_{1} \ldots i_{n} t_{1} \ldots t_{n} u}-\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} h_{t_{1} \ldots t_{n} j_{1} \ldots j_{n} u} h_{i_{1} \ldots i_{n} t_{1} \ldots t_{n} v} \tag{3.3}
\end{gather*}
$$

Note that the series

$$
\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}} h_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u} y_{1}^{j_{1}} \cdots y_{n}^{j_{n}} \quad \text { and } \quad R_{i_{1} \ldots i_{n} j_{1} \ldots j_{n} u v} y_{1}^{j_{1}} \cdots y_{n}^{j_{n}}
$$

converge for $\left(y_{1}, \ldots, y_{n}\right) \in W$ and $\left(x_{1}, \ldots, x_{k}\right) \in U$. In order to simplify the notations, sometimes we will denote by the Greek indices $\alpha, \beta, \gamma, \ldots$ a set of n integer indices $i_{1} \ldots i_{n} ; j_{1} \ldots j_{n} ; \ldots$ We will denote by $\{r\}$ the set of n indices $0 \ldots 010 \ldots 0$ where 1 appears at the r-th place. Now $\alpha+\beta$ and $\alpha-\beta$ are defined by

$$
i_{1} \ldots i_{n} \pm j_{1} \ldots j_{n}=\left(i_{1} \pm j_{1}\right)\left(i_{2} \pm j_{2}\right) \ldots\left(i_{n} \pm j_{n}\right)
$$

Theorem 3.1. The quantities $h_{\alpha \beta u}$ and $R_{\alpha \beta u v}$ satisfy the following properties:

$$
\begin{equation*}
h_{(\alpha+\beta) \gamma u}=h_{\alpha(\gamma-\beta) u}+h_{\beta(\gamma-\alpha) u} \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
R_{(\alpha+\beta) \gamma u v}=R_{\alpha(\gamma-\beta) u v}+R_{\beta(\gamma-\alpha) u v} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
h_{\alpha \beta u}=\sum_{s=1}^{n} i_{s} h_{\{s\}(\beta-\alpha+\{s\}) u} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
R_{\alpha \beta u v}=\sum_{s=1}^{n} i_{s} R_{\{s\}(\beta-\alpha+\{s\}) u v}, \tag{3.7}
\end{equation*}
$$

where $\alpha=i_{1} \ldots i_{n}$.
Proof. Using the definition (3.2) we obtain

$$
\begin{gathered}
h_{\alpha(\gamma-\beta) u}+h_{\beta(\gamma-\alpha) u}= \\
=h_{i_{1} \ldots i_{n}\left(t_{1}-j_{1}\right) \ldots\left(t_{n}-j_{n}\right) u}+h_{j_{1} \ldots j_{n}\left(t_{1}-i_{1}\right) \ldots\left(t_{n}-i_{n}\right) u}= \\
=\sum_{s=1}^{n} i_{s} f_{s\left(t_{1}-j_{1}-i_{1}\right) \ldots\left(t_{n}-j_{n}-i_{n}\right) u}+\sum_{s=1}^{n} j_{s} f_{s\left(t_{1}-i_{1}-j_{1}\right) \ldots\left(t_{n}-i_{n}-j_{n}\right) u}= \\
=\sum_{s=1}^{n}\left(i_{s}+j_{s}\right) f_{s\left(t_{1}-\left(i_{1}+j_{1}\right)\right) \ldots\left(t_{n}-\left(i_{n}+j_{n}\right)\right) u}= \\
=h_{\left(i_{1}+j_{1}\right) \ldots\left(i_{n}+j_{n}\right) t_{1} \ldots t_{n} u}=h_{(\alpha+\beta) \gamma u},
\end{gathered}
$$

and the identity (3.4) is proved.
From the definition of $R_{\lambda \mu u v}$, i.e.

$$
R_{\lambda \mu u v}=\frac{\partial}{\partial x_{u}} h_{\lambda \mu v}-\frac{\partial}{\partial x_{v}} h_{\lambda \mu u}+\sum_{\delta} h_{\delta \mu v} h_{\lambda \delta u}-\sum_{\delta} h_{\delta \mu u} h_{\lambda \delta v}
$$

and the identity (3.4) we obtain

$$
\begin{gathered}
R_{(\alpha+\beta) \gamma u v}= \\
=\frac{\partial}{\partial x_{u}} h_{\alpha(\gamma-\beta) v}+\frac{\partial}{\partial x_{u}} h_{\beta(\gamma-\alpha) v}-\frac{\partial}{\partial x_{v}} h_{\alpha(\gamma-\beta) u}-\frac{\partial}{\partial x_{v}} h_{\beta(\gamma-\alpha) u}+ \\
+\sum_{\delta} h_{\delta \gamma v}\left(h_{\alpha(\delta-\beta) u}+h_{\beta(\delta-\alpha) u}\right)-\sum_{\delta} h_{\delta \gamma u}\left(h_{\alpha(\delta-\beta) v}+h_{\beta(\delta-\alpha) v}\right)= \\
=\frac{\partial}{\partial x_{u}} h_{\alpha(\gamma-\beta) v}-\frac{\partial}{\partial x_{v}} h_{\alpha(\gamma-\beta) u}+\frac{\partial}{\partial x_{u}} h_{\beta(\gamma-\alpha) v}-\frac{\partial}{\partial x_{v}} h_{\beta(\gamma-\alpha) u}+ \\
+\sum_{\delta}\left(h_{(\delta-\beta)(\gamma-\beta) v}+h_{\beta(\gamma-\delta+\beta) v}\right) h_{\alpha(\delta-\beta) u}+ \\
+\sum_{\delta}\left(h_{(\delta-\alpha)(\gamma-\alpha) v}+h_{\alpha(\gamma-\delta+\alpha) v}\right) h_{\beta(\delta-\alpha) u}- \\
-\sum_{\delta}\left(h_{(\delta-\beta)(\gamma-\beta) u}+h_{\beta(\gamma-\delta+\beta) u}\right) h_{\alpha(\delta-\beta) v}-
\end{gathered}
$$

$$
\begin{gathered}
\quad-\sum_{\delta}\left(h_{(\delta-\alpha)(\gamma-\alpha) u}+h_{\alpha(\gamma-\delta+\alpha) u}\right) h_{\beta(\delta-\alpha) v}= \\
=R_{\alpha(\gamma-\beta) u v}+R_{\beta(\gamma-\alpha) u v}+\sum_{\delta} h_{\beta(\gamma-\delta+\beta) v} h_{\alpha(\delta-\beta) u}+ \\
+\sum_{\delta} h_{\alpha(\gamma-\delta+\alpha) v} h_{\beta(\delta-\alpha) u}-\sum_{\delta} h_{\beta(\gamma-\delta+\beta) u} h_{\alpha(\delta-\beta) v}- \\
-\sum_{\delta} h_{\alpha(\gamma-\delta+\alpha) u} h_{\beta(\delta-\alpha) v}=R_{\alpha(\gamma-\beta) u v}+R_{\beta(\gamma-\alpha) u v}
\end{gathered}
$$

because

$$
\sum_{\delta} h_{\beta(\gamma-\delta+\beta) v} h_{\alpha(\delta-\beta) u}=\sum_{\delta} h_{\alpha(\gamma-\delta+\alpha) u} h_{\beta(\delta-\alpha) v}
$$

and

$$
\sum_{\delta} h_{\alpha(\gamma-\delta+\alpha) v} h_{\beta(\delta-\alpha) u}=\sum_{\delta} h_{\beta(\gamma-\delta+\beta) u} h_{\alpha(\delta-\beta) v} .
$$

Hence the identity (3.5) is proved.
Finally, (3.6) and (3.7) are direct consequences of (3.4) and (3.5). Indeed, using (3.4) and (3.5) one can verify that if (3.6) and (3.7) hold for the set of indices $i_{1} \ldots i_{n}$, then they also hold for the set of indices $i_{1} \ldots\left(i_{s} \pm 1\right) \ldots i_{n}$ for each $s \in\{1, \ldots, n\}$.

We notice that (3.6) can be proved simpler as follows. From (3.2) it follows

$$
h_{\{r\} j_{1} \ldots j_{n} u}=f_{r j_{1} \ldots j_{n} u}
$$

and now (3.6) is a consequence of (3.2).
Finally, we notice that (3.4) and (3.5) are also consequences of (3.6) and (3.7), i.e.

$$
(3.4) \Leftrightarrow(3.6) \text { and }(3.5) \Leftrightarrow(3.7)
$$

Now we are ready to give the main theorem.
Theorem 3.2. (i) The compatibility conditions for the system (3.1) for arbitrary initial conditions $y_{i}(0, \ldots, 0)=C_{i}, 1 \leq i \leq n$, are

$$
\begin{equation*}
R_{\alpha \beta u v} \equiv 0 \quad \text { i.e. } \quad R_{\{r\} \beta u v} \equiv 0 \tag{3.8}
\end{equation*}
$$

(ii) If the compatibility conditions (3.8) are satisfied, then there exist functions

$$
P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>}\left(x_{1}, \ldots, x_{k}\right), w_{1}, \ldots, w_{n} \in \mathbb{N}_{0}, i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{n} \in \mathbb{Z}
$$

in a neighborhood of $(0, \ldots, 0)$ such that

$$
\begin{gather*}
P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<0, \ldots, 0>}=\delta_{i_{1} j_{1}} \delta_{i_{2} j_{2}} \ldots \delta_{i_{n} j_{n}}, \tag{3.9a}\\
P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{u}+1, \ldots, w_{k}>}=\frac{\partial}{\partial x_{u}} P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>}+
\end{gather*}
$$

$$
\begin{equation*}
+\sum_{t_{1}, \ldots, t_{n} \in \mathbb{Z}}\left(\sum_{s=1}^{n} i_{s} f_{s\left(t_{1}-i_{1}\right) \ldots\left(t_{s}-i_{s}+1\right) \ldots\left(t_{n}-i_{n}\right) u}\right) P_{t_{1} \ldots t_{n}, \ldots j_{1}}^{<w_{1}, \ldots, w_{k}>} . \tag{3.9b}
\end{equation*}
$$

If $\left(C_{1}, \ldots, C_{n}\right) \in W$, then the solution of (3.1) in a neighborhood of $(0, \ldots, 0)$ is given by
(3.10) $y_{2}=\sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}}\left[\frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \sum_{j_{1}, \ldots, j_{n} \in \mathbb{Z}} P_{01 \ldots 0 j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>} C_{1}^{j_{1}} \cdot C_{2}^{j_{2}} \cdots C_{n}^{j_{n}}\right]$

$$
y_{n}=\sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}}\left[\frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \sum_{j_{1}, \ldots, j_{n} \in \mathbb{Z}} P_{0 \ldots 1 j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>} C_{1}^{j_{1}} \cdot C_{2}^{j_{2}} \cdots C_{n}^{j_{n}}\right] .
$$

This solution is unique with the given initial conditions in a neighborhood of $(0, \ldots, 0)$.

Proof. Let us introduce the following functions

$$
y_{\alpha}=y_{i_{1} i_{2} \ldots i_{n}}=y_{1}^{i_{1}} \cdot y_{2}^{i_{2}} \cdots y_{n}^{i_{n}}, \quad\left(i_{1}, \ldots, i_{n} \in \mathbb{Z}\right)
$$

such that $y_{1}=y_{\{1\}}, \ldots, y_{n}=y_{\{n\}}$. These functions satisfy

$$
\frac{\partial y_{\{r\}}}{\partial x_{u}}+\sum_{\alpha} f_{r \alpha u} y_{\alpha}=0 \quad(1 \leq r \leq n, 1 \leq u \leq k)
$$

and hence

$$
\begin{gathered}
\frac{\partial y_{\alpha}}{\partial x_{u}}=\frac{\partial}{\partial x_{u}}\left(y_{1}^{i_{1}} \cdot y_{2}^{i_{2}} \cdots y_{n}^{i_{n}}\right) \\
=i_{1} y_{\alpha-\{1\}} \frac{\partial y_{1}}{\partial x_{u}}+\cdots+i_{n} y_{\alpha-\{n\}} \frac{\partial y_{n}}{\partial x_{u}}
\end{gathered}
$$

$$
\begin{gather*}
=i_{1} y_{\alpha-\{1\}}\left(-\sum_{\beta} f_{1 \beta u} y_{\beta}\right)+\cdots+i_{n} y_{\alpha-\{n\}}\left(-\sum_{\beta} f_{n \beta u} y_{\beta}\right) \\
=-i_{1} \sum_{\beta} f_{1 \beta u} y_{\alpha+\beta-\{1\}}-\cdots-i_{n} \sum_{\beta} f_{n \beta u} y_{\alpha+\beta-\{n\}} \\
=-\sum_{s=1}^{n} i_{s} \sum_{\beta} f_{s \beta u} y_{\alpha+\beta-\{s\}} \\
=-\sum_{s=1}^{n} i_{s} \sum_{\gamma} f_{s(\gamma-\alpha+\{s\}) u} y_{\gamma}, \quad \text { i.e. } \\
\frac{\partial}{\partial x_{u}} y_{\alpha}+\sum_{\gamma} h_{\alpha \gamma u} y_{\gamma}=0 \tag{3.11}
\end{gather*}
$$

for $\alpha \in \mathbb{Z}^{n}, u \in\{1, \ldots, k\}$.
Thus we obtain that the system (3.1) induces the system (3.11). The converse also holds, i.e. one can prove that if the functions $f_{r \alpha u}$ are given, and
(i) the system (3.11) is satisfied, where $h_{\alpha \gamma u}$ are defined by (3.2),
(ii) $y_{i_{1} \ldots i_{n}}(0, \ldots, 0)=C_{1}^{i_{1}} \cdot C_{2}^{i_{2}} \cdots C_{n}^{i_{n}} \quad\left(C_{i}\right.$ are constants $)$,
then the system (3.1) is satisfied, where $y_{r}=y_{\{r\}}$ for $1 \leq r \leq n$.
Similarly to the compatibility conditions for the system (2.1), the compatibility conditions for the homogeneous linear system (3.11) are given by $R_{\alpha \beta u v} \equiv 0$, i.e. $R_{\{s\} \beta u v} \equiv 0$, because (3.7) is satisfied. Hence, the compatibility conditions of (3.1) are given by (3.8), and (i) is proved.

Similarly to the proof of Theorem 2.1, if the compatibility conditions (3.8) are satisfied, then there exist functions

$$
P_{\alpha \beta}^{<w_{1}, \ldots, w_{k}>}\left(x_{1}, \ldots, x_{k}\right), \quad w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}, \alpha, \beta \in \mathbb{Z}^{n}
$$

such that $(3.9 \mathrm{a}, \mathrm{b})$ are satisfied. In order to prove that they are well defined, the convergence in (3.9b) should be verified. It is easy to prove from (3.9a) and (3.9b) that for each $w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}$ the series

$$
\sum_{i_{1}, \ldots, i_{n} \in \mathbb{Z}} P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>} z_{1}^{j_{1}-i_{1}} \cdot z_{2}^{j_{2}-i_{2}} \cdots z_{n}^{j_{n}-i_{n}}
$$

uniformly converge for $\left(z_{1}, \ldots, z_{n}\right)$ in a closed subset of W. The proof is by induction of w_{1}, \ldots, w_{k} and it is analogous to the proof of the convergence of $\sum_{\gamma} h_{\gamma \alpha v} h_{\beta \gamma u}$.

The convergency in (3.9b) follows simultaneously from here. Further by induction of w_{1}, \ldots, w_{k} it is also verified the uniform convergence of

$$
\sum_{j_{1}, \ldots, j_{n} \in \mathbb{Z}} P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots w_{k}>} z_{1}^{j_{1}} \cdot z_{2}^{j_{2}} \cdots z_{n}^{j_{n}}
$$

for $\left(z_{1}, \ldots, z_{n}\right)$ in a closed subset of W. Moreover, for fixed i_{1}, \ldots, i_{n} there exist constants $M_{i_{1} \ldots i_{n}}$ in a neighborhood of the considered point, such that

$$
\left|\sum_{j_{1}, \ldots, j_{n} \in \mathbb{Z}} P_{i_{1} \ldots i_{n} j_{1} \ldots j_{n}}^{<w_{1}, \ldots, w_{k}>} C_{1}^{j_{1}} \cdots C_{n}^{j_{n}} \cdot \frac{1}{w_{1}!\cdots w_{k}!}\right| \leq M_{i_{1} \ldots i_{n}}
$$

for arbitrary $w_{1}, \ldots, w_{n} \in \mathbb{N}_{0}$ and $\left(C_{1}, \ldots, C_{n}\right) \in W$. The proof follows from a formula analogous to (2.9). Indeed, using the same notations as in the proof of the Theorem 2.1, by induction of $w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}$, it is verified that

$$
\left|\sum_{\beta} Q_{\alpha \beta}^{<w_{1}, \ldots, w_{k}>} \sum_{\gamma} M_{\beta \gamma} C_{1}^{j_{1}} \cdots C_{n}^{j_{n}}\right| \leq N_{\alpha} \quad\left(\gamma=j_{1} \ldots j_{n}\right)
$$

where N_{α} do not depend on w_{1}, \ldots, w_{k}, and where

$$
\begin{gathered}
M_{\beta \gamma}=\max _{a_{1}, \ldots, a_{k} \in\{0,1\}}\left|\frac{\partial^{w_{1}-m_{1}+\ldots+w_{k}-m_{k}}}{\partial x_{1}^{w_{1}-m_{1}} \ldots \partial x_{k}^{w_{k}-m_{k}}} P_{\beta \gamma}^{<a_{1}, \ldots, a_{k}>}\right| . \\
\cdot \frac{\rho^{w_{1}-m_{1}+\cdots+w_{k}-m_{k}}}{\left(w_{1}-m_{1}\right)!\ldots\left(w_{k}-m_{k}\right)!}
\end{gathered}
$$

according to the Cauchy integral formula.
Similarly to the proof of Theorem 2.1, one can verify that the solution of (3.1) with $y_{i_{1} \ldots i_{n}}(0, \ldots, 0)=C_{1}^{i_{1}} \cdot C_{2}^{i_{2}} \ldots C_{n}^{i_{n}}$ is given by

$$
y_{\alpha}=\sum_{w_{1}, \ldots, w_{k} \in \mathbb{N}_{0}}\left[\frac{\left(-x_{1}\right)^{w_{1}}}{w_{1}!} \cdots \frac{\left(-x_{k}\right)^{w_{k}}}{w_{k}!} \sum_{\beta} P_{\alpha \beta}^{<w_{1}, \ldots, w_{k}>} C_{1}^{j_{1}} C_{2}^{j_{2}} \ldots C_{n}^{j_{n}}\right]
$$

where $\beta=j_{1} \ldots j_{n}$. Its convergence follows from the previous discussion. Especially, if $\alpha \in\{1\}, \ldots, \alpha \in\{n\}$ we obtain the required solution (3.10).

Each solution of (3.1) is analytical function. On the other hand, by successive differentiation of (3.1), we notice that all partial derivatives of y_{s} can be calculated
uniquely at $(0, \ldots, 0)$. Hence (3.1) does not have more than one solution in a neighborhood of $(0, \ldots, 0)$, and the obtained solution is unique.

REFERENCES

[1] K. B. Marathe and M. Modugno. Polynomial connections on affine bundles. Tensor N.S., 50 (1991), 34-46.
[2] K. Trenčevski. A formula for the k-th covariant derivative. Serdica, 15 (1989), 197-202.
[3] K. Trenčevski. On the solution of arbitrary system of linear differential equations. Matematički Bilten, 14 (XL) (1990), 73-77.
[4] K. Trenčevski. General solution of Frenet equations. In the Proceedings of a Conference on Differential Geometry and Its Applications, July 25-30, 1993, Bucharest (accepted).
[5] K. TrenČEvski. General solutions of analytical systems of differential equations. Matematički Bilten, (submitted).
[6] K. TrenČevski. Contribution to the non-linear connections. Tensor, (submitted).

Institute of Mathematics
Stt. Cyril and Methodius University
P.O.Box 162, Skopje

Received June 16, 1994
MACEDONIA

[^0]: 1991 Mathematics Subject Classification: 35C10, 35F05, 35F20
 Key words: linear analytical systems, non-linear analytical systems, partial differential equations, compatibility conditions

