


Serdica Math. J. 21 (1995), 201-218

MEAN-PERIODIC SOLUTIONS OF RETARDED FUNCTIONAL

DIFFERENTIAL EQUATIONS

Dimitar Tsvetkov

Communicated by E. Horozov

Abstract. In this paper we present a spectral criterion for existence of mean-
periodic solutions of retarded functional differential equations with a time-inde-
pendent main part.

Introduction. Consider the retarded functional differential equation

x′(t) =

∫ 0

−r
dH(θ)x(t+ θ) + f(t).(1)

We will investigate the problem for existence and uniqueness of solutions which belong

to certain class of functions when f belongs to the same one. Here x and f are l-vector

valued functions and H is l × l-matrix whose elements are real functions of bounded

variation on [−r, 0], r > 0.

Below we present samples of our problem. Let P (ω) be the space of the con-

tinuous ω-periodic functions and let f ∈ P (ω). Then Eq.(1) has a unique solution

x ∈ P (ω) ∩ C1(R,C l)

when the characteristic function of a complex variable λ

χ(λ)
def
= det

(

Eλ−

∫ 0

−r
exp(λθ)dH(θ)

)
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has no zeros of the form
2kπi

ω
, k ∈ Z.

This result is a corollary of Theorem 9.1.2 of Hale [1]. Here E is the unit matrix of

C l and i is the imaginary unit. We denote by Cq(∆,C l) the space of the functions

g : ∆→ C l with continuous derivatives up to q-th order where ∆ ⊂ R is an interval.

Let AP be the space of the continuous almost-periodic functions, due to Bohr,

and let f ∈ AP . Then from Theorem 9.1.1 [1] follows that Eq.(1) has a unique solution

x ∈ AP ∩ C1(R,C l)

when the characteristic function χ has no zeros on the imaginary axis. In accordance

with the same Theorem, this result remains valid also for bounded on the real axis

functions f .

In both cases we have a spectral criterion for a solvability of our problem.

For any a ∈ R the ω-periodicity of g ∈ C0([a,∞),C l) is presented by the

property
∫ ω

0
g(t+ s)dη(s) = 0, t ≥ a,

where η(0) = η(ω) = 0 and η(s) = 1 for 0 < s < ω. We are going to generalize this

definition assuming that for a fixed integer p we have a distribution η with an action

〈η(s), g(s)〉
def
=

p
∑

i=0

∫ κ

0
g(i)(s)dηi(s)

where ηi, 0 ≤ i ≤ p, are real functions of bounded variation in [0, κ], κ > 0.

Definition 1. Following Schwartz [2], for a fixed integer p, κ ≥ 0 and for any

real a, we call mean-periodic the functions which belong to the classes

MP (η, a)
def
=
{

g ∈ Cp([a,∞),Cl) : 〈η(s), g(t + s)〉 = 0, t ≥ a
}

,

MP (η,−∞)
def
=
{

g ∈ Cp(R,Cl) : 〈η(s), g(t + s)〉 = 0, t ∈ R
}

.

The main purpose of this work is to find conditions under which Eq.(1) has a

mean-periodic solution when f is mean-periodic of the same class. To the best of the

author’s knowledge this problem has not been discussed yet except for the periodic

case. We will give a spectral criterion for its solvability. In this way we show that such

a problem has an algebraic essence.
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Certainly this paper is related to the problem of representation in projection

series. More details on this topic the reader may find, for instance, in Banks and

Manitius [3], Henry [4], as well in the fundamental works of Leont’ev [5, 6] and Sedleckii

[7]. Also this paper is related to certain class of spectral-mapping problems; see, for

instance, Hale [1:Ch.7,Ch.11], Henry [4] and the fundamental work of Hille and Philips

[8:Ch.16].

The proofs that we present are straightforward but not so short. Perhaps one

can make them more concise by means of constructive use of the spectral theory.

The main result. At first we have to define what we call a solution of Eq.(1).

We use the conventional

Definition 2. Let f ∈ C0([a,∞),Cl). A solution of Eq.(1), which begins

from the point a, is said to be a function

x(·; f, a) ∈ C0([a− r,∞),Cl) ∩ C1([a,∞),Cl)

which satisfies Eq.(1) for t ≥ a.

This definition is natural. We have a well-posed forward initial value problem

/IVP/, i.e. for a given continuous x at [a − r, a], Eq.(1) has a unique solution which

begins from the point a (see [1]).

Let B be an operator in a Banach space. By σ(B) we point out the spectrum

of B. (For unbounded B we may have σ(B) = Ø; note that A is unbounded.)

Let A be the generator of the semigroup T (t), t ≥ 0, associated with Eq.(1).

It is known (see [1]) that σ(A) contains only eigenvalues which are just the zeros of the

characteristic function χ. Clearly σ(A) 6= Ø. Introduce the entire function

Φ(λ)
def
= 〈η(s), exp(λs)〉.

Let γ be the jump of ηp(s) at s = 0, i.e.
∫ κ

0
g(s)dηp(s)

def
= γg(0) +

∫ κ

0
g(s)dη◦p(s)

where η◦p is continuous at zero.

Our main result is

Theorem 1. Let γΦ(λ) 6= 0 for λ ∈ σ(A) and f ∈ MP (η, a). Then Eq.(1)

has a unique solution x(·; f, a) ∈MP (η, a− r).

The condition γ 6= 0 allows us to propose

Lemma 1. Let γ 6= 0 and g ∈ MP (η, a). Then there is a unique ĝ ∈

MP (η,−∞) such that

ĝ(t) = g(t), t ≥ a.
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Moreover, g ∈ Cq([a,∞),C l) implies ĝ ∈ Cq(R,C l). Certainly the latter is essential

only with q > p.

P r o o f. Consider a backward IVP for the equation of a neutral type

p
∑

i=0

∫ κ

0
y(i)(t+ θ)dηi(θ) = 0, t ≤ a,(2)

with an initial condition y(θ) = g(θ), θ ∈ [a, a+ κ]. We have

p
∑

i=0

∫ κ

0
g(i)(a+ θ)dηi(θ) = 0.(3)

The condition γ 6= 0 makes the backward IVP for Eq.(2) to be well-posed (see [1]).

Therefore Eq.(2), with the pointed out initial condition, has a solution which is the

function ĝ that we are looking for. The smoothness of ĝ at a follows from (3).

The proof of the second part can be done in a conventional way taking into

account the smoothness of the initial condition on [a, a+ κ]. �

This result allows us to assume a function of MP (η, ·), with γ 6= 0, as a function

of MP (η,−∞). At this point we may improve Theorem 1 as follows.

Theorem 2. Let γΦ(λ) 6= 0 for λ ∈ σ(A) and f ∈MP (η,−∞). Then Eq.(1)

has a unique solution

x∗(·; f) ∈MP (η,−∞) ∩C1(R,C l)

which satisfies Eq.(1) on the whole real axis. Furthermore, f ∈ Cq(R,C l) implies

x∗(·; f) ∈ Cq+1(R,C l).

P r o o f. Let

x(·; f, a) ∈MP (η, a− r) ∩ C1([a,∞),C l)

be the solution of Eq.(1), beginning from arbitrary chosen point a, whose existence is

provided by Theorem 1. The uniqueness part of Lemma 1 gives

x(t; f, b) = x(t; f, a) for t ≥ b ≥ a.

Thus we are able to define

x∗(t; f)
def
= x(t; f, a) for t ≥ a.

The proof of the second part is evident. �
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Remark. Suppose γ 6= 0. Then one can find that the condition “Φ(λ) 6= 0 for

λ ∈ σ(A)” fails only for a finite number elements of σ(A) since, in this case, the zeros

of Φ belong to certain half-plane Reλ ≥ λΦ and, on the other hand, such a half-plane

contains a finite number points of σ(A).

Theorem 2 shows that our “mean-periodic” problem is a complete analog with

respect to the “periodic” case and an analog with respect to the “almost-periodic” one.

Note that the set of almost-periodic functions has no convenient description, in view

of our aims, in “mean-periodic” terms.

The rest of the paper is dedicated to the proof of Theorem 1.

Proof of Theorem 1. For the sake of completeness, we will give some facts

from [1] and [8]. Let X be the Banach space of the functions of C0([−r, 0],Cl) with the

uniform norm. Assume ψ ∈ X, f ∈ C0([0,∞),C l), and add to Eq.(1) the following

initial condition

x(θ) = ψ(θ), θ ∈ [−r, 0].(4)

The IVP (1)-(4), i.e. Eq.(1) with the initial condition /IC/ (4), has a unique solution

which begins from zero. The strongly continuous semigroup of linear operators T (t) :

X → X, t ≥ 0, is produced by the solution of the homogeneous equation

y′(t) =

∫ 0

−r
dH(θ)y(t+ θ), t ≥ 0,(5)

with an IC ψ ∈ X as follows
(

T (t)ψ
)

(θ) = y(t+ θ), θ ∈ [−r, 0],

and the solution of IVP (1)-(4) turns into the form

x(t+ θ; f, 0) =
(

T (t)ψ
)

(θ) +

∫ t

0
U(t+ θ − τ)f(τ)dτ, t ≥ 0, θ ∈ [−r, 0],(6)

where U : [−r,∞) → C l×l is the fundamental matrix of Eq.(5). According to its

definition, U is continuous on [0,∞), satisfies Eq.(5) almost for all t ≥ 0 and

U(0) = E, U(θ) = 0, θ ∈ [−r, 0).(7)

The infinitesimal generator A is a differentiation in its domain which consists of the

functions ψ ∈ C1([−r, 0],C l) with

ψ′(0) =

∫ 0

−r
dH(θ)ψ(θ).(8)
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The operator A is closed, with all its powers, and each half-plane Reλ ≥ λ0 contains

a finite number of elements of σ(A). Remember that µ ∈ σ(A) iff χ(µ) = 0. Every

µ ∈ σ(A) is a pole of the resolvent of A. For a given ψ ∈ X, the map T (t)ψ : [0,∞)→ X

is continuous. Then, for a real β of bounded variation in [0, κ], there exists
∫ κ

0
T (s)ψdβ(s)

which defines a bounded operator in X. We need a more general operator

P
def
=

p
∑

i=0

∫ κ

0
T (s)Ai · dηi(s).

The domain of P coincides with the domain of Ap which is dense in X and belongs to

Cp([−r, 0],C l). We denote a domain of an operator by D(·).

Continue with

Lemma 2. Let ψ ∈ D(Ap), f ∈ Cp([0,∞),C l), and, in the case when p ≥ 1,

the following condition holds

(∗) f (i)(0) = 0, 0 ≤ i ≤ p− 1.

Then the solution y of Eq.(5), with an IC ψ, belongs to Cp([−r,∞),C l) and

y(i)(t+ θ) =
(

T (t)Aiψ
)

(θ), t ≥ 0, θ ∈ [−r, 0], 0 ≤ i ≤ p.

The solution x(·; f, 0) of Eq.(1), with an IC ψ, belongs to Cp([−r,∞),C l) and

x(i)(t+ θ; f, 0) = y(i)(t+ θ) +

∫ t

0
U(t+ θ − τ)f (i)(τ)dτ, t ≥ 0, θ ∈ [−r, 0], 0 ≤ i ≤ p.

P r o o f. Assume p ≥ 1. Otherwise there is nothing to prove. In view of (6) we

have

x(t+ θ; f, 0) = y(t+ θ) +

∫ t

0
U(t+ θ − τ)f(τ)dτ, t ≥ 0, θ ∈ [−r, 0].(9)

Obviously y has a continuous derivative for t + θ ∈ [0,∞). When t + θ ∈ [−r, 0],

y has a continuous derivative since ψ ∈ D(A) ⊂ C1([−r, 0],C l). For a proof that

y ∈ C1([−r,∞),C l), it is enough to show that the left and the right derivatives of y at

zero are equal which follows from (8). Therefore y′(t), t ≥ −r, is a solution of Eq.(5)

with an IC ψ′ = Aψ. Then

(

y(t+ θ)
)

′

=
(

T (t)Aψ
)

(θ), t ≥ 0, θ ∈ [−r, 0].



Mean-Periodic Solutions of Retarded FDE 207

By (7) it is easy to verify that

(∫ t

0
U(t+ θ − τ)f(τ)dτ

)′

=

∫ t

0
U(t+ θ − τ)f ′(τ)dτ + U(t+ θ)f(0)

for (t + θ) ∈ [−r, 0) ∪ (0,∞). The assumption f(0) = 0 gives that the second addend

in (9) also belongs to C1([−r,∞),C l).

In this way we prove Lemma 2 for i = 1. Repeating the construction above, we

prove that Lemma 2 is valid for i = 0, 1, . . . , p. �

Lemma 3. Let y be the solution of Eq.(5) with an IC ψ ∈ X. Then, for a

real β of bounded variation on [0, κ], it holds

∫ κ

0
y(s+ θ)dβ(s) =

(∫ κ

0
T (s)ψdβ(s)

)

(θ), θ ∈ [−r, 0].

Here on the left-hand side of the equality stays the usual Stieltjes integral while on the

right-hand side stays the abstract one.

P r o o f. Let 0 = s0 < s1 < . . . < sq = κ with |si − si−1| ≤ ε and ξi ∈

[si, si−1], 1 ≤ i ≤ q. Then

q
∑

i=1

(β(si)− β(si−1)) T (ξi)ψ
ε→0
→

∫ κ

0
T (s)ψdβ(s).

The convergence in X is the uniform convergence of functions on [−r, 0]. Hence, for

θ ∈ [−r, 0], it holds

(∫ κ

0
T (s)ψdβ(s)

)

(θ)
ε→0
←

q
∑

i=1

(β(si)− β(si−1))T (ξi)ψ(θ) =

=
q
∑

i=1

(β(si)− β(si−1)) y(ξi + θ)
ε→0
→

∫ κ

0
y(s+ θ)dβ(s).

We are ready to offer a proof of Theorem 1 in which we assume that the initial

point a is equal to zero. This assumption is not a restriction since the main part of

Eq.(1) is autonomous.

P r o o f o f Th e o r e m 1. Existence. First, in the case when p ≥ 1, we suppose

that f satisfies (∗) of Lemma 2. When p = 0 we do not need this regularity condition.

Let ψ ∈ D(Ap) ≡ D(P). Lemma 2 gives that the solution x(·; f, 0) of Eq.(1), with an

IC ψ, belongs to Cp([−r,∞),C l). This allows us to set

z(t)
def
= 〈η(s), x(t + s; f, 0)〉, t ≥ −r.
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It is easy to see that z is a solution of the homogeneous IVP

z′(t) =

∫ 0

−r
dH(θ)z(t+ θ), t ≥ 0,

z(θ) = 〈η(s), x(s + θ; f, 0)〉, θ ∈ [−r, 0].

By Lemmas 2 and 3 we find

z(θ) =
(

Pψ
)

(θ) + F (θ), θ ∈ [−r, 0],

where

F (θ)
def
=

p
∑

i=0

∫ κ

0

(∫ s

0
U(s+ θ − τ)f (i)(τ)dτ

)

dηi(s) .

Hereafter, in Theorem 4, will be shown that the operator P is convertible under the

conditions of Theorem 1. On the other hand, it is clear that F ∈ X. Choosing

ψ = −P−1F we obtain z(θ) = 0, θ ∈ [−r, 0]. The uniqueness of the solutions of IVP

implies z(t) = 0 for t ≥ 0. Therefore x(·; f, 0) ∈MP (η,−r).

Further we leave the assumption that f satisfies (∗). Naturally, in what follows,

we suppose p ≥ 1.

Consider two cases.

I. The function Φ has a finite number of zeros.

Then in view of the fact that Φ is an entire function of an exponential type we

get

Φ(λ) = P (λ)exp(νλ)

where P is a polynomial and ν ∈ R. Furthermore, one can find that P is of p-th degree

with a major coefficient γ and ν = 0. Then MP (η, ·) consists of the functions satisfying

the homogeneous equation with scalar coefficients

γg(p)(t) +
p−1
∑

i=0

eig
(i)(t) = 0

i.e. the set of the quasipolynomials

∑

j

∑

i

tiexp(µjt)cij , ∀cij ∈ C l,

where µ1, . . . are the zeros of P /which coincide with the zeros of Φ/ and the sums are

taken in the well-known way. It is not difficult to show that the map

g(t)→ g′(t)−

∫ 0

−r
dH(θ)g(t+ θ),
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with χ(µ) 6= 0, transforms one-to-one the quasipolynomial class

q
∑

i=0

tiexp(µt)ci, ∀ci ∈ C l.

Then the solution that we are looking for can be found as a quasipolynomial since

χ(µj) 6= 0, j = 1, . . . , in accordance with the conditions of Theorem 1.

II. The function Φ has an infinite number of zeros.

Let λ1, . . . , λp are different zeros of Φ and

f(t)
def
=

p
∑

i=1

exp(λit)ai, ∀ai ∈ C l.

The functions of this type belong to MP (η,−∞). Let also ai, i = 1, . . . , p, are chosen

such that

f∗(t)
def
= f(t)− f(t)

satisfies (∗). It can be done since the determinant of the system

f (j)(0) −
p
∑

i=1

(λi)
j ai = 0, 0 ≤ j ≤ p− 1,

is not equal to zero. Let x∗(·; f∗, 0) be a MP (η,−r)-solution of Eq.(1) which corre-

sponds to f∗. Then we can find a MP (η,−r)-solution for f in a form

x∗(t; f∗, 0) +
p
∑

i=1

exp(λit)bi

where bi ∈ C l, 1 ≤ i ≤ p, must be determined by the equalities

(

Eλi −

∫ 0

−r
dH(s)exp(λis)

)

bi = ai, 1 ≤ i ≤ p.

Suppose that some matrix in the latter degenerates. Then the corresponding λ· should

be in σ(A). This contradicts the condition Φ(λ·) 6= 0.

Uniqueness. Let x1(·; f, 0), x2(·; f, 0) ∈ MP (η,−r) are solutions of Eq.(1) and

denote with x(·; f, 0) their difference. Let also

ψi(θ)
def
= xi(θ; f, 0), i = 1, 2, θ ∈ [−r, 0].

Then x(·; f, 0) ∈ Cp([−r,∞),C l) is a solution of Eq.(1) with f ≡ 0. One can find

immediately that ψ1 − ψ2 ∈ D(Ap). Then as in the beginning of the proof we obtain
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P(ψ1 − ψ2) = 0. This fact, with the convertibility of P, result in ψ1 = ψ2. Therefore

x1(·; f, 0) ≡ x2(·; f, 0). �

Convertibility of P. Rewrite Φ in the form

Φ(λ) = λp



γ +

∫ κ

0
exp(λs)dη◦p(s) +

p−1
∑

i=0

λi−p

∫ κ

0
exp(λs)dηi(s)





def
= λp (γ + Ψ(λ)) .

There exist nondecreasing functions

η+
i , η

−

i , 0 ≤ i ≤ p− 1; η◦+p , η◦−p ;

for which

ηi(s) = η+
i (s)− η−i (s), η◦p(s) = η◦+p (s)− η◦−p (s), s ∈ [0, κ].

Put

Ψ∗(λ)
def
=

∫ κ

0
exp(λs)dη◦+p (s) +

∫ κ

0
exp(λs)dη◦−p (s)+

+
p−1
∑

i=0

(−λ)i−p

∫ κ

0
exp(λs)dη+

p (s) +
p−1
∑

i=0

(−λ)i−p

∫ κ

0
exp(λs)dη−p (s).

Of course, when p = 0 there are no sums in the above expressions.

Lemma 4. Let λ ∈ (−∞, 0). Suppose that m and k are whole nonnegative

numbers. Then
∣

∣

∣

(

λ−pΨm(λ)
)(k)

∣

∣

∣ ≤
(

(−λ)−p (Ψ∗(λ))m)(k)
.

Moreover

lim
Reµ→−∞

|Ψ∗(µ)| = lim
Reµ→−∞

|Ψ(µ)| = 0

which in particular gives that, in the case when γ 6= 0, there is a constant ω > 0 such

that

|γ|−1 |Ψ(µ)| ≤
1

2
, |γ|−1 |Ψ∗(µ)| ≤

1

2
, Reµ ≤ −ω.

P r o o f. Denote

S(0, 0) = 1 ; S(0, i) = 0 , i ≥ 1 ; S(j, 0) = 1 , j ≥ 1 ;

S(j, i) = j. . . . .(j + i− 1) j, i ≥ 1.
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Let ξ : [0, κ]→ R be nondecreasing and j ≥ 0. Then the right-hand side of the equality

(

(−λ)−j

∫ κ

0
exp(λs)dξ(s)

)(k)

=
k
∑

i=0

(

k

i

)

S(j, i)(−λ)−j−i

∫ κ

0
sk−iexp(λs)dξ(s)

is nonnegative for λ < 0. By the definitions of Ψ and Ψ∗ we see that both sides of

the inequality, in the first part of Lemma 4, contain the same addends which differ,

eventually, by a sign. The previous conclusion implies that the addends in the right-

hand side are certainly nonnegative.

The proof of the second part follows from the fact that η◦p is continuous at

zero. �

Following [8], we propose

Lemma 5. Let S(t), t ≥ 0, be a strongly continuous semigroup of linear

operators in a Banach space and let B be its generator. Then the operator

Q
def
=

p
∑

i=0

∫ κ

0
S(s)Bi · dηi(s)

is closed.

Lemma 5 can be proved in a common way using an induction with respect to

p. On the other hand, this assertion is clear. For these reasons we omit the proof.

Our preparation finishes with

Theorem 3. Let γ 6= 0 and let ω be chosen as in Lemma 4. Let also

S(t), t ≥ 0, be a strongly continuous semigroup of linear operators in a Banach space

Y with a generator B for which

‖S(t)‖ ≤Mexp(−2ωt), t ≥ 0.

Then the operator Q, defined in Lemma 5, is convertible.

P r o o f. The domain of Q coincides with D(Bp) which is dense in Y . Under the

conditions of Theorem 3, it follows that there are no points of σ(B) in the half-plane

Reλ > −2ω. For a fixed x ∈ Y , it holds uniformly with respect to t ∈ [0, κ] (see Yoshida

[9])

lim
n→∞

exp(Bnt)x = S(t)x(10)

where

Bn = nJn − nI, Jn = n(nI −B)−1, n ≥ 0.

Here I is the identity. According to the general theory (see [8, 9]) we have

‖(Jn)k‖ ≤Mnk(n+ 2ω)−k, k, n ≥ 0.(11)
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Note that M is a constant independent of n and k. Consider the operators

Qn
def
=

p
∑

i=0

∫ κ

0
exp(Bns)(Bn)idηi(s), n ≥ 0.

The boundedness of Bn implies Qn = Φ(Bn). Also Qn, n ≥ 0, commute. Then

(Bn)jx = (Jn)jBjx, x ∈ D(Bj), j, n ≥ 0,

lim
n→∞

Jnx = x, x ∈ Y,

together with (10), yield

lim
n→∞

Qnx = Qx, x ∈ D(Bp).(12)

Let

∆(n)
def
= {λ ∈ C : |λ+ n| < n− ω} , Γ(n)

def
= {λ ∈ C : |λ+ n| = n− ω} , n > ω.

Below we assume n as an arbitrary whole number greater than 2ω+1.

Then n− ω > n2(n+ 2ω)−1 and the inequalities (11) imply that, for |n+ λ| = |n− ω|

it holds

‖(n(n+ λ)−1Jn)k‖ < M(q(n))k, n, k ≥ 0,

with a constant

q(n)
def
=

n2

(n− ω)(n + 2ω)
< 1.

Therefore the equality

λI −Bn = (n+ λ)
(

I − n(n+ λ)−1Jn

)

, n+ λ 6= 0,

provides that the representation

(λI −Bn)−1 =
∞
∑

k=0

(n+ λ)−k−1nk(Jn)k(13)

holds for λ /∈ ∆(n) ∪ Γ(n). Thus, for the spectrum of Bn, we obtain σ(Bn) ⊂ ∆(n).

The disk ∆(n) belongs to the half-plane Reλ ≤ −ω. Moreover, according to Lemma 4,

we have

Φ(λ)−1 = γ−1λ−p

(

1 + (−1)m
∞
∑

m=1

(γ−1Ψ(λ))m
)

, Reλ ≤ −ω,(14)
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which implies that Φ−1 is analytic in a neighbourhood of ∆(n) ∪ Γ(n). Then the

operator Q−1
n exists and

Q−1
n =

1

2πi

∫

Γ(n)
(Φ(λ))−1(λI −Bn)−1dλ.

The contour Γ(n) is assumed to be counterclockwise. The uniform convergence in (14)

allows us to interchange the sum and integral. Then

Q−1
n =

∞
∑

m=0

(−1)mGm

where

Gm
def
=

1

γ2πi

∫

Γ(n)
λ−p(γ−1Ψ(λ))m(λI −Bn)−1dλ.

By (13) the latter becomes

Gm = γ−1−m
∞
∑

k=0

1

k!

(

λ−p(Ψ(λ))m
)(k)

∣

∣

∣

λ=−n
nk(Jn)k(15)

The inequalities ‖(n − ω)−knk(Jn)k‖ ≤M, k ≥ 0, and Lemma 4 imply

‖Gm‖ ≤Mγ−1−m
∞
∑

k=0

1

k!

(

(−λ)−p(Ψ∗(λ))m
)(k)

∣

∣

∣

λ=−n
(n− ω)k

in which the sum is the Taylor’s series of the function

(−λ)−p(Ψ∗(λ))m

centered at −n and taken for −ω. Again in accordance with Lemma 4

‖Gm‖ ≤M |γ|
−1|γ|−mω−p(Ψ∗(−ω))m ≤Mω−p|γ|−12−m, m ≥ 0.(16)

Adding these inequalities we get

‖Q−1
n ‖ ≤ 2Mω−p|γ|−1,

i.e. the norm of Q−1
n has an independent of n upper bound which is the central point

of the proof. The inequalities

‖Q−1
i x−Q−1

j x‖ ≤ ‖Q−1
i Q

−1
j ‖‖Qix−Qjx‖, i, j ≥ 2ω + 1, x ∈ D(Q),
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and (12) give that the sequence
{

Q−1
n

}

converges on D(Q) to a bounded operator

B : Y → Y for which we will prove that it is the converse one of Q. By the equality

Q−1
n (Qnx−Qx) +Q−1

n Qx = x, x ∈ D(Q),

after going over to a limit, we get

BQx = x, x ∈ D(Q).

Using induction one can show that, for µ /∈ σ(B), it holds

Bp(µI −B)−kx = (µI −B)−kBpx, x ∈ D(Bp), k ≥ 0.

The operator Bp is closed. Then by (15) and (16) it is not difficult to see that the

operator Q−1
n transforms into itself D(Bp)(≡ D(Q)). This allows us to write

Q−1
n (Qnx−Qx) +QQ−1

n x = x, x ∈ D(Q).

Now going over to a limit and taking into account that Q is closed (Lemma 5) we

obtain another equality

QBx = x, x ∈ Y,

which completes the proof. �

We are ready to prove

Theorem 4. Let γΦ(λ) 6= 0 for λ ∈ σ(A). Then the operator P is convertible.

P r o o f. Let ω be chosen as in Lemma 4 and Λ
def
= {µ1, . . . , µd} be the set of

the eigenvalues of A in the half-plane Reλ ≥ −2ω.

Without loss of generality, we suppose Λ 6= Ø since we may choose ω à priori

sufficiently large and σ(A) is certainly nonempty.

The condition Φ(µi) 6= 0, i = 1, . . . , d, gives the existence of a ε > 0 such that

the circles Γi
def
= {λ ∈ C : |λ− µi| = ε} do not intersect and Φ(λ) 6= 0 for |λ − µi| ≤ ε.

Let

ΓΛ
def
=

d
⋃

i=1

Γi.

Then we are able to introduce the projector

PΛ
def
=

1

2πi

∫

ΓΛ

(λI −A)−1dλ.

The contour ΓΛ is assumed to be counterclockwise. As well we can represent X in a

direct sum

X = XΛ ⊕X0
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of invariant with respect to A and T (t), t ≥ 0, subspaces with

XΛ
def
= {ψ ∈ X : PΛψ = ψ} , X0

def
= {ψ ∈ X : PΛψ = 0} .

Also these subspaces are invariant with respect to P. Further

T (t) = TΛ(t) + T0(t), t ≥ 0,

where

TΛ(t)
def
=

1

2πi

∫

ΓΛ

exp(λt)(λI −A)−1dλ

and T0 is a strongly continuous semigroup of linear operators in X0. Let A0 be the

generator of T0 which, evidently, is the restriction of A in X0. As in Lemma 7.2.1[1],

one can get that σ(A0) contains, eventually, only eigenvalues among the zeros of the

characteristic function χ.

In accordance with the same Lemma, each µ ∈ σ(A) is a pole of the resolvent

with degree that is equal to the multiplicity of µ as a zero of χ. Therefore

XΛ = ⊗d
i=1Ker(µiI −A)ν(i)

where ν(i) is the multiplicity of µi. It is clear that each µi is not an eigenvalue of A0.

The operator T0(t) is compact for t ≥ r since T (t) has the same property [1]. The

latter provides that the semigroup T0(t) is uniformly continuous for t ≥ r. For such a

semigroup it holds a spectral-mapping Theorem 16.4.1 [8] which implies

σ(T0(r)) = {exp(µr) : µ ∈ σ(A0)} ∪ {0}.

At this point we may have σ(A0) = Ø. Then Lemma 7.4.2 [1] gives the existence of a

constant M0 with

‖T0(t)‖ ≤M0exp(−2ωt), t ≥ 0.(17)

The convertibility of P means the same for the operators

PΛ
def
=

p
∑

i=0

∫ κ

0
TΛ(s)Ai · dηi(s) and P0

def
=

p
∑

i=0

∫ κ

0
T0(s)A

i · dηi(s)

in the corresponding subspaces XΛ and X0. One can find immediately that

P−1
Λ =

1

2πi

∫

ΓΛ

(Φ(λ))−1(λI −A)−1dλ.

The convertibility of P0 follows from (17) and Theorem 3. �
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Notes and examples. The condition Φ(λ) 6= 0 for λ ∈ σ(A) is necessary for

the convertibility of P, in view of the fact that the numbers {Φ(λ) : λ ∈ σ(A)} are in

the spectrum of P. For p = 0, Theorem 3 is a corollary of Theorem 16.4.1 [8], since

T (t) is uniformly continuous for t ≥ r.

When r ↓ 0, Eq.(1) reduces to a system of ordinary differential equations

x′(t) = Ax(t) + f(t)

where A is a real l × l-matrix. In this case the operator P = Φ(A) is bounded and

the classical spectral-mapping theorems give that σ(P) = {Φ(λ) : λ ∈ σ(A)}, i.e. P is

convertible iff Φ(λ) 6= 0 for λ ∈ σ(A). Note that the condition γ 6= 0 has no role here.

As we note in the Remark after Theorem 2, the equality Φ(λ) = 0 may hold

only for a finite number elements of σ(A) when γ 6= 0. This allows us to accept the

conditions of Theorems 1 and 2 as effective.

Example 1. Let p = 0 and let η(≡ η0) be the function defined in the

first section. Then MP (η,−∞) consists of the continuous ω-periodic functions and

Φ(λ) = 1 − exp(λω). Theorem 2 gives the known result that if f is a ω-periodic

continuous function and 2kπi/ω /∈ σ(A), k ∈ Z, then Eq.(1) has a unique ω-periodic

solution defined on the whole real axis.

Example 2. Let

〈η, g〉 = P
( d

ds

)

g(s)

∣

∣

∣

∣

∣

s=0

where P (≡ Φ) is a polynomial. Then MP (η,−∞) consists of the quasipolynomials

∑

j

∑

i

tiexp(µjt)bji, ∀bji ∈ C l,

where µ1, . . . are the roots of P . The conditions of Theorem 2 reduces to µj /∈ σ(A), j =

1, . . ..

The following example is not illustrative as the previous ones.

Example 3. Assume γ 6= 0 and that ηp has also a jump at κ. Then the forward

and the backward IVP for Eq.(2) are well-posed. Thus for a given φ ∈ Cp([0, κ],C l)

with
p
∑

i=0

∫ κ

0
φ(i)(θ)dηi(θ) = 0(18)

there is a unique f(·;φ) ∈ MP (η,−∞) which coincides with φ at [0, κ]. Theorem 2

says that Eq.(1), with f(·;φ), has a unique MP (η,−∞)-solution, when Φ(λ) 6= 0 for λ

with χ(λ) = 0. We may consider this solution as generated by φ.

Note that the convertibility of the operator Q, defined in Theorem 3, is inde-

pendent of the value of the constant M .
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In the general case, the set MP (η, a) has a complicated structure. In par-

ticular, MP (η, a) contains the linear closure, with respect to the natural topology of

Cp([a,∞),C l), of the quasiexponential functions tjexp(µt)v. Here µ is a zero of Φ, j

is less than the multiplicity of µ and v ∈ C l. In the regular case, i.e. when ηp have

jumps at the both ends of [0, κ], MP (η, ·) admits an internal description as a functions

class produced by the initial conditions φ satisfying (18).

At the beginning of this section we commented the necessity of the condition

Φ(λ) 6= 0, λ ∈ σ(A), with respect to the solvability of the mean-periodic problem.

Actually we do not give a proof of this fact. Note only that the situation is similar to

the case of ordinary differential systems.

Besides in Lemma 1, which helps our main result to appear in a natural form

(Theorem 2), we use essentially another condition γ 6= 0 in the proof of Theorem 3.

These facts justify γ 6= 0 as a reasonable assumption in the presented construction. It

will be of interest to investigate the rate of its necessity.

It should be interesting also to prove Theorems 1 and 2 for neutral functional

differential equations. This problem can be treated in a similar way if we are able to

describe a convenient analog of the projector PΛ.
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