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THEORY AND MOUNTAIN PASS THEOREM ON C1−FINSLER

MANIFOLDS
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Abstract. Let M be a complete C1−Finsler manifold without boundary and
f : M → R be a locally Lipschitz function. The classical proof of the well known
deformation lemma can not be extended in this case because integral lines may
not exist. In this paper we establish existence of deformations generalizing the
classical result. This allows us to prove some known results in a more general
setting (minimax theorem, a theorem of Ljusternik-Schnirelmann type, mountain
pass theorem). This approach enables us to drop the compactness assumptions
characteristic for recent papers in the field using the Ekeland’s variational principle
as the main tool.

1. Introduction. In [9] R. S. Palais proved the following

Theorem 1.1. Let M be a complete C2−Finsler manifold (without boundary)

of category k and f : M → R be a C1−function which is bounded below. If f satisfies

the Palais-Smale condition then f has at least k distinct critical points.
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As A. Szulkin points out in [13], Ivar Ekeland posed the question whether this

theorem is still valid for a C1−Finsler manifoldM of category k. The classical proof can

not be extended to this case bacause integral lines (along which important deformations

are constructed) may not exist. A. Szulkin in [13] proved the result of Palais when M

is a C1−Finsler manifold containing a nonempty compact subset of category k, using

the Ekeland’s variational principle instead of the classical deformation lemma (see [1],

[14]). In this paper we answer the Ekeland’s question positively. We do it by proving

and applying a suitable deformation lemma.

Another motivation for establishing existence of deformations of a C1−Finsler

manifold M is the series of results known as “mountain pass theorem”. As far as

we know one of the most general results in this series (concerning C1−functions f :

M → R) is the “min-max principle” of N. Ghoussoub (Theorem 1 and its quantitative

version Theorem 1.ter in [5]). It is proved by using the Ekeland’s variational principle

as the main tool. Our deformation lemma allows us to prove this theorem dropping the

compactness assumption on the elements of the deformation stable family F appearing

in its formulation (see Theorem 1 in [5], theorem 1 in [7] and section 5 below). Moreover,

we relax the smoothness condition on the function f : M → R, assuming it locally

Lipschitz.

The first to consider locally Lipschitz functions (instead of C1 ones) in the

mountain pass setting was K. C. Chang (see [2]). The fact that ”the separating moun-

tain range has positive altitude” is crucial for the proof of his result (as well as for

the proof of the classical mountain pass theorem, see [1]). In [7] N. Ghoussoub and D.

Preiss established a general mountain pass principle for smooth functions (Gâteaux-

differentiable with strong to weak∗ continuous derivative) in the case of “zero altitude

mountain range”, replacing the deformations by the Ekeland’s variational principle and

initiating new perturbation methods. In [11] we generalize the both above mentioned

results using deformations. Independently M. Choulli, R. Deville and A. Rhandi ap-

plying again the Ekeland’s variational principle, obtained in [3] the main result of [11]

proving that it includes the general mountain pass principle of [7]. Now it can be

considered as a corollary of Theorem 5.2 below.

We would like to express our gratitude to Prof. R. Lucchetti and to the referee

for their kind attention to this work. They found a gap in the proof of Theorem 4.2 so

helping us very much. We thank the referee for this and for the fast refereeing process.

The paper is organized as follows. In Section 2 we introduce some basic notions

of the theory of the Clarke subdifferential for the case of locally Lipschitz functions on
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C1−manifolds. In Section 3 we prove the main tool for our subsequent investigation –

the deformation lemma. Section 4 is devoted to the Ljusternik-Schnirelmann theory for

locally Lipschitz functions on C1−Finsler manifolds and Section 5 – to the “min-max

principle” of N. Ghoussoub and the mountain pass theorem in the same setting.

2. Preliminaries. In this section we introduce the necessary notions and the

basic relations between them.

Let M be a C1−Banach manifold modelled on a Banach space E. For x0 ∈M ,

we denote by Tx0(M) the tangent space to M at x0.

Definition 2.1. The function f : M → R is called locally Lipschitz iff

f ◦ ϕ−1 : ϕ(Oϕ) → R is locally Lipschitz for every chart (Oϕ, ϕ).

Definition 2.2. Let x0 ∈M , the chart (Oϕ, ϕ) be such that x0 ∈ Oϕ, Fϕ(y) :=

f(ϕ−1(y)) and ∂Fϕ(ϕ(x0)) be the Clarke subdifferential (cf. [4], Section 2.1.1) of Fϕ

at ϕ(x0) ∈ E. The set

{x∗ ∈ Tx0(M)∗ : x∗ = ϕ∗(x0)(y
∗) for some y∗ ∈ ∂Fϕ(ϕ(x0))}

where ϕ∗(x0) ∈ L(E∗, Tx0(M)∗) is the mapping adjoint to the differential ϕ∗(x0) ∈

L(Tx0(M), E) of ϕ at x0, is called Clarke subdifferential of f at x0 and is denoted by

∂f(x0).

Lemma 2.1. The set ∂f(x0) does not depend on the chart (Oϕ, ϕ).

P r o o f. Let (Oϕ, ϕ) and (Oψ, ψ) be two charts with x0 ∈ Oϕ ∩ Oψ. Let z∗ =

(ψ−1)∗(ψ(x0))(x
∗) where x∗=ϕ∗(x0)(y

∗) for some y∗∈ ∂Fϕ(ϕ(x0)) and (ψ−1)∗(ψ(x0))∈

L(Tx0(M)∗, E∗) is the mapping adjoint to the differential (ψ−1)∗(ψ(x0)) ∈ L(E,Tx0(M))

of ψ−1 at ψ(x0). Then

z∗ = (ψ−1)∗(ψ(x0))[ϕ
∗(x0)(y

∗)] = [(ψ−1)∗(ψ(x0))]
∗ ◦ [ϕ∗(x0)]

∗(y∗) =

= [ϕ∗(x0) ◦ (ψ−1)∗(ψ(x0))]
∗(y∗) = [(ϕ ◦ ψ−1)∗(ψ(x0))]

∗(y∗).

Let us define g : ψ(Oϕ∩Oψ) → ϕ(Oϕ∩Oψ) by g = ϕ◦ψ−1. Then z∗ = [g∗(ψ(x0))]
∗(y∗),

i.e. z∗ = y∗ ◦ g∗(ϕ(x0)). For z ∈ ψ(Oϕ ∩Oψ) we have

Fψ(z) = f(ψ−1(z)) = f(ϕ−1(ϕ(ψ−1(z)))) = Fϕ(g(z)).

Since g ∈ C1[ψ(Oϕ∩Oψ), ϕ(Oϕ∩Oψ)], it is strongly differentiable. Moreover g∗(ψ(x0)) =

g
′

(ψ(x0)) ∈ L(E,E) is surjective. Therefore according to theorem 2.3.10 in [4] we have

∂Fψ(ψ(x0)) = ∂(Fϕ ◦ g)(g−1(ϕ(x0))) = ∂Fϕ(g(g−1(ϕ(x0)))) ◦ g
′

(g−1(ϕ(x0))) =

= ∂Fϕ(ϕ(x0)) ◦ g
′

(ψ(x0)) = ∂Fϕ(ϕ(x0)) ◦ g∗(ψ(x0)).
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Hence

z∗ = y∗(g∗(ψ(x0)) ∈ ∂Fϕ(ϕ(x0)) ◦ g∗(ψ(x0)) = ∂Fψ(ψ(x0)).

Since x∗ = ψ∗(x0)(z
∗), the lemma is proved. �

Definition 2.3. Let x0 ∈M,f : M → R be locally Lipschitz and h0 ∈ Tx0(M).

The number

sup{< x∗, h0 >: x∗ ∈ ∂f(x0)}

is called Clarke derivative of f at x0 in direction h0 and is denoted by f0(x0, h0).

Remark 2.1. Since ∂Fϕ(ϕ(x0)) is weak∗ compact in E∗ and ϕ∗(x0) : E∗ →

Tx0(M)∗ is weak∗ to weak∗ continuous, ∂f(x0) is weak∗ compact in Tx0(M)∗. Conse-

quently in Definition 2.3 we could have written “max” instead of “sup”.

Lemma 2.2. Let x0 ∈ M, (Oϕ, ϕ) be a chart with x0 ∈ Oϕ, h0 ∈ Tx0(M) and

f : M → R be a locally Lipschitz function. Then

f0(x0, h0) = lim sup
y→ϕ(x0) t↓0

f(ϕ−1(y + tϕ∗(x0)(h0))) − f(ϕ−1(y))

t

P r o o f. We have that

f0(x0, h0) = max{< x∗, h0 >: x∗ ∈ ∂f(x0)} =

= max{< x∗, h0 >: x∗ = ϕ∗(x0)(y
∗) for some y∗ ∈ ∂(f ◦ ϕ−1)(ϕ(x0))} =

= max{< ϕ∗(x0)(y
∗), h0 >: y∗ ∈ ∂(f ◦ ϕ−1)(ϕ(x0))} =

= max{< y∗, ϕ∗(x0)(h0) >: y∗ ∈ ∂(f ◦ ϕ−1)(ϕ(x0))} =

= (f ◦ ϕ−1)0(ϕ(x0), ϕ∗(x0)(h0)) = lim sup
y→ϕ(x0) t↓0

f(ϕ−1(y + tϕ∗(x0)(h0))) − f(ϕ−1(y))

t

where the last equality is the definition of the Clarke derivative of the Lipschitz function

f ◦ ϕ−1 : E → R at the point ϕ(x0) ∈ E in direction ϕ∗(x0)(h0) ∈ E ([4], 3.2.1). This

completes the proof. �

We proceed with recalling a basic notion for the present paper: the C1-Finsler

manifold (cf. [9], [7], [6]).

Definition 2.4. Let M be a C1−Banach manifold with T (M) as tangent

bundle and Tx(M) as tangent space at the point x. A Finsler structure on T (M) is a

continuous function ‖.‖ : T (M) → [0,+∞) such that:

(a) for each x ∈M the restriction ‖.‖x of ‖.‖ to Tx(M) is a norm on the latter;
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(b) for each x0 ∈M and k > 1 there is a neighbourhood U of x0 such that

1

k
‖.‖x ≤ ‖.‖x0 ≤ k‖.‖x

for all x ∈ U .

TheC1−Banach manifoldM equipped with a Finsler structure is called C1−Fin-

sler manifold. If now σ : [a, b] → M is a C1−path, the length of σ is defined by

L(σ) =
∫ b
a ‖σ̇(t)‖dt. The distance ρ(x, y) between two points x and y in the same

connected component of M is defined as the infimum of L(σ) over all σ joining x and

y. The function ρ is then a metric on each component of M (called the Finsler metric),

and it generates the original topology of M .

The C1−Banach manifold being endowed with a Finsler structure, it is natural

to ask whether Definition 2.1 is consistent with the usual Lipschitz property on a metric

space. The answer is “yes” and it is provided by the following

Lemma 2.3. Let M be a C1−Finsler manifold without boundary. Then

f : M → R is locally Lipschitz according to Definition 2.1 iff for every x0 ∈ M there

exists an open neighbourhood U of x0 and a positive KU such that

|f(x) − f(y)| ≤ KU . ρ(x, y)

for every x, y from U .

P r o o f. Let f : M → R has the property from the formulation of this lemma.

Let (Oϕ, ϕ) be an arbitrary chart with x0 ∈ Oϕ and k > 1. Let U1 ⊂ Oϕ be an

open neighbourhood of x0 with the propery (b) of Definition 2.4. Let U2 ⊂ U1 ∩ U

be an open neighbourhood of x0 such that ϕ(U2) is convex in E. Let us fix x and y

in U2 and let s(t) = ϕ−1(ϕ(x) + t(ϕ(y) − ϕ(x))) for t ∈ [0, 1]. Since s(t) ⊂ U2 and

ṡ(t) = ϕ−1
∗ (ϕ(s(t)))(ϕ(y) − ϕ(x)) we have

|f(ϕ−1(ϕ(x))) − f(ϕ−1(ϕ(y)))| = |f(x) − f(y)| ≤ KU . ρ(x, y) ≤

≤ KU

∫ 1

0
‖ϕ−1

∗ (ϕ(s(t)))(ϕ(y) − ϕ(x))‖Ts(t)(M)dt ≤

≤ KU .k

∫ 1

0
‖ϕ−1

∗ (ϕ(x0))(ϕ(y) − ϕ(x))‖Tx0 (M)dt ≤

≤ KU .k‖ϕ
−1
∗ (ϕ(x0))‖L(E,Tx0 (M))‖ϕ(y) − ϕ(x)‖E ,

i.e. f ◦ ϕ−1 is locally Lipschitz.
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In order to prove the reverse implication we need the following

Claim. Let M be a C1−Finsler manifold, x ∈M, (Oϕ, ϕ) be a chart such that

x0 ∈ Oϕ, k > 1 and U ⊂ Oϕ be a neighbourhood of x0 corresponding to (b) of Definition

2.4., i.e.

1

k
‖ϕ−1

∗ (ϕ(x))(v)‖Tx(M) ≤ ‖ϕ−1
∗ (ϕ(x0))(v)‖Tx0 (M) ≤ k‖ϕ−1

∗ (ϕ(x))(v)‖Tx (M)

for each v ∈ E and each x ∈ U . Then

‖ϕ∗(x)‖L(Tx(M),E) ≤ k‖ϕ∗(x0)‖L(Tx0 (M),E)

holds true for every x ∈ U .

P r o o f o f t h e c l a im. It is easy to check that if X and Y are two Banach

spaces, A ∈ L(X,Y ) is injective and surjective and A−1 ∈ L(Y,X) is its inverse, then

‖A−1‖L(Y,X) = (inf{‖Ax‖Y : ‖x‖X = 1})−1.

Let x ∈ U be fixed. We have

‖ϕ∗(x)‖L(Tx(M),E) = (inf{‖ϕ−1
∗ (ϕ(x))(v)‖Tx(M) : ‖v‖E = 1})−1 ≤

≤ k(inf{‖ϕ−1
∗ (ϕ(x0))(v)‖Tx0 (M) : ‖v‖E = 1})−1 = k‖ϕ∗(x0)‖L(Tx0 (M),E)

which proves the claim.

Turning back to the proof of Lemma 2.3, let f : M → R be locally Lipschitz

according to Definition 2.1. Let x0 ∈ M be fixed and the chart (Oϕ, ϕ) be such that

x0 ∈ Oϕ. Let k > 1, U ⊂ Oϕ be an open neighbourhood of x0 with the property (b) of

Definition 2.4 and f ◦ ϕ−1 be Lipschitz on ϕ(U) with some positive KU . Let r ∈ (0, 1)

be such that {z ∈M : ρ(x0, z) ≤ 2r} ⊂ U, V = {z ∈ M : ρ(x0, z) <
r
2} and x, y ∈ V be

arbitrary fixed. Let σr : [0, 1] → M be a C1−path connecting x and y and satisfying
∫ 1
0 ‖σ̇r(t)‖dt ≤ ρ(x, y)(1 + r). We claim that {σr(t) : t ∈ [0, 1]} ⊂ U . If it was not the

case, σr(t0) 6∈ U for some t0 ∈ (0, 1). Then

∫ 1

0
‖σ̇r(t)‖dt =

∫ t0

0
‖σ̇r(t)‖dt +

∫ 1

t0
‖σ̇r(t)‖dt ≥

≥ ρ(x, σr(t0)) + ρ(σr(t0), y) > 1.5r + 1.5r = 3r.

On the other hand
∫ 1

0
‖σ̇r(t)‖dt ≤ ρ(x, y)(1 + r) < r(1 + r) = r + r2
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which contradicts the above inequality. Finally, since
d

dt
(ϕ ◦ σr)(t) = ϕ∗(σr(t))(σ̇r(t)) we have

|f(x) − f(y)| = |(f ◦ ϕ−1)(ϕ(x)) − (f ◦ ϕ−1)(ϕ(y))| ≤ KU‖ϕ(x) − ϕ(y)| ≤

KU

∫ 1

0
‖
d

dt
(ϕ ◦ σr)(t)‖Edt ≤ KU

∫ 1

0
‖ϕ∗(σr(t))‖L(Tσr(t)(M),E)‖σ̇r(t))‖Tσr(t)(M)dt ≤

≤ KU k‖ϕ∗(x0)‖L(Tx0 (M),E)(1 + r)ρ(x, y)

and Lemma 2.3 is proved. �

In Section 4 we shall need the equivalent of Proposition 2.1.1.a) from [4] for the

case of locally Lipschitz function defined on C1−Finsler manifold instead of on Banach

space. This equivalent is

Lemma 2.4. Let M be a C1−Finsler manifold without boundary, x0 ∈

M,h0 ∈ Tx0(M) and f : M → R be Lipschitz around x0 with constant K. Then

|f0(x0, h0)| ≤ K‖h0‖Tx0 (M).

P r o o f. Let the chart (Oϕ, ϕ) be such that x0 ∈ Oϕ, k > 1 and let U ⊂ Oϕ

be an open neighbourhood of x0 corresponding to (b) of definition 2.4 and having the

properties:

— ϕ(U) is convex in E;

— f is Lipschitz in U with constant K.

Let y ∈ ϕ(U), t0 > 0 be such that y + t0ϕ∗(x0)(h0) ∈ ϕ(U) and s(t) = ϕ−1(y +

tϕ∗(x0)(h0)) for t ∈ [0, t0]. Then

|f(ϕ−1(y + tϕ∗(x0)(h0))) − f(ϕ−1(y)|

t
=

=
|f(s(t)) − f(s(0))|

t
≤
K

t

∫ t

0
‖ṡ(τ))‖Ts(τ)(M)dτ ≤

≤
K.k

t

∫ t

0
‖(ϕ−1

∗ (ϕ(x0))ϕ∗(x0)(h0)‖Tx0 (M) = K.k‖h0‖Tx0 (M).

Hence

|f0(x0, h0)|=| lim sup
y→ϕ(x0) t↓0

f(ϕ−1(y + tϕ∗(x0)(h0))) − f(ϕ−1(y))

t
| ≤

≤ lim sup
y→ϕ(x0) t↓0

|f(ϕ−1(y + tϕ∗(x0)(h0))) − f(ϕ−1(y))|

t
≤ K.k ‖h0‖Tx0 (M).
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Letting k ↓ 1 we finish the proof. �

A concluding definition remains to be given in these preliminaries. It introduces

the notion “steepness” (for a locally Lipschitz function f) which, if negative at some

point x, means that there is a direction in which we can “go down”, starting from

(x, f(x)) and following the graph of f .

Definition 2.5. Let M be a C1−Finsler manifold, x0 ∈ M and f : M → R

be locally Lipschitz. The number

inf{f0(x0, h) : h ∈ Tx0(M), ‖h‖Tx0 (M) = 1}

is called steepness of f at x0 and is denoted by stf(x0).

The steepness for locally Lipschitz functions defined on a Banach space was first

introduced in [11], where its relation to a similar notion introduced by K. C. Chang in

[2] was discussed. The steepness for locally Lipschitz functions defined on a C1−Finsler

manifold was introduced in [12].

3. Deformation lemma. In this section we establish the existence of defor-

mations of a C1−Finsler manifold which generalize the well known ones concerning

Banach spaces or manifolds of smoothness at least C2−.

The following notation will be used in the sequel:

For any subset S of a metric space X with metric ρ and for every positive α,

Sα = {x ∈M : dist(x, S) ≤ α} where dist(x, S) = inf{ρ(x, y) : y ∈ S}.

Theorem 3.1 (Deformation lemma). Let M be a complete C1−Finsler ma-

nifold without boundary and f : M → R be a locally Lipschitz function on it. Let S be

a subset of M , c be a real number, ε and δ be positives and k > 1. We suppose that

stf(y) < −
2ε

δ
for every y in an open neighbourhood Q of f−1([c− ε, c+ ε])∩Skδ. Then

there exists η ∈ C([0, 1] ×M,M) with the following properties:

(i) η(0, x) = x for every x ∈M ;

(ii) η(t, x) = x for every x ∈M \Q, t ∈ [0, 1];

(iii) η(1, f−1((−∞, c+ ε]) ∩ S) ⊂ f−1((−∞, c− ε]) ∩ Sk2δ;

(iv) ρ(x, η(1, x)) ≤ k2δ for every x ∈M , where ρ is the Finsler metric on each

component of M .

P r o o f. We first prove the deformation lemma for the case of connected M .

Without loss of generality we can assume that Q ⊂ f−1((c− kε, c+ kε)).

Step 1. Construction of the open covering {Uγ}γ∈Γ.



Deformation Lemma and Mountain Pass Theorem 247

The Finsler structure of M and the steepness condition on f yield for

every x ∈ Q the existence of a neighbourhood Ux of it, a tangent unit vector hx ∈

Tx(M), ‖hx‖Tx(M) = 1 and a chart (Oϕx , ϕx) with Ux ⊂ Oϕx such that for every y ∈ Ux

we have

f(ϕ−1
x (ϕx(y) + tϕx∗(x)(hx))) − f(y) < −

2ε

δ
t

for every t ∈ (0, tx), tx > 0 and

1

k
‖ϕ−1

x∗ (ϕx(y))(v)‖Ty (M) ≤ ‖ϕ−1
x∗ (ϕx(x))(v)‖Tx(M) ≤ k‖ϕ−1

x∗ (ϕx(y))(v)‖Ty (M)

for every v in the Banach space E. Getting a smaller Ux if necessary we can assume

f(ϕ−1
x (ϕx(y) + tϕx∗(x)(hx))) − f(y) < −

2ε

δ
t

whenever y and ϕ−1
x (ϕx(y) + tϕx∗(x)(hx)) are in Ux.

The family {Ux}x∈Q is an open covering of Q. Let {Uγ}γ∈Γ be a locally finite

refinement of it and {αγ}γ∈Γ be a Lipschitz partition of unity subordinate to {Uγ}γ∈Γ,

that is αγ : M → [0, 1] are Lipschitz continuous functions, αγ(x) > 0 iff x ∈ Uγ and
∑

γ∈Γ

αγ(x) = 1 for every x in the closed set S ∩ f−1([c− ε, c + ε]).

Let us fix γ ∈ Γ. Then there exists a point xγ ∈ Q with Uγ ⊂ Uxγ , a chart ϕγ

with Oϕγ ⊃ Uγ and a vector hγ = ϕγ∗(xγ)(hxγ ) ∈ E satisfying

(1) f(ϕ−1
γ (ϕγ(y) + thγ)) − f(y) < −

2ε

δ
t

whenever y and ϕ−1
γ (ϕγ(y) + thγ) are in Uγ .

The following step gives the basic small deformations of M .

Step 2. Construction of the “elementary deformations” ηγ .

For a fixed γ ∈ Γ we define ηγ ∈ C([0, 1] ×M,M) in the following way :

ηγ(t, x) =

{

x if x 6∈ Uγ
ϕ−1
γ (z(t, ϕγ(x))) if x ∈ Uγ

where z(t, y) is the solution of the Cauchy problem

ż = αγ(ϕ
−1
γ (z)).hγ z(0) = y

at the moment t > 0. Then for every t ∈ [0, 1] and every x ∈M we have:

(A) ρ(x, ηγ(t, x)) ≤ kt
∫ 1
0 αγ(ηγ(ts, x))ds;

(B) f(ηγ(t, x)) − f(x) ≤ −2ε
δ t

∫ 1
0 αγ(ηγ(ts, x))ds;
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(C) ηγ(t, .) : M →M is a diffeomorphism for each t ∈ [0, 1].

Indeed (A) is obvious for x 6∈ Uγ . Otherwise σ(s) = ϕ−1
γ (z(ts, ϕγ(x))) is a

C1−path between x and ηγ(t, x) and hence (using the claim from the proof of Lemma

2.3)

ρ(x, ηγ(t, x))≤

∫ 1

0
‖σ̇(s)‖Tσ(s)(M)ds =

=

∫ 1

0
αγ(ϕ

−1
γ (z(ts, ϕγ(x)))).t‖ϕ

−1
γ∗ (z(ts, ϕγ(x)))(hγ )‖Tσ(s)(M)ds =

=t

∫ 1

0
αγ(ηγ(ts, x)).‖ϕ

−1
γ∗ (ϕγ(ηγ(ts, x))) ◦ ϕγ∗(xγ)(hxγ ))‖Tσ(s)(M)ds ≤

≤t

∫ 1

0
αγ(ηγ(ts, x)).k‖ϕ

−1
γ∗ (ϕγ(xγ)) ◦ ϕγ∗(xγ)(hxγ ))‖Txγ (M)ds =

=kt

∫ 1

0
αγ(ηγ(ts, x)).‖hxγ‖Txγ (M)ds = kt

∫ 1

0
αγ(ηγ(ts, x))ds.

To prove (B) we see that in fact

z(t, ϕγ(x)) = ϕγ(x) + (

∫ t

0
αγ(ϕ

−1
γ (z(τ, ϕγ(x))))dτ)hγ

and so

f(ηγ(t, x)) − f(x) < −
2ε

δ

∫ t

0
αγ(ϕ

−1
γ (z(τ, ϕγ(x))))dτ = −

2ε

δ
t

∫ 1

0
αγ(ηγ(ts, x))ds

by (1) because x ∈ Uγ yields z(t, ϕγ(x)) ∈ ϕγ(Uγ) for every t. If x 6∈ Uγ , ηγ(ts, x) = x

and the equality holds. The assertion (C) needs no proof.

Step 3. Composition of all ηγ ’s.

Let us think of the set Γ as of the ordinal interval [0, γ0) (i.e. let Γ be well

ordered). We will construct a family {ξγ : 0 ≤ γ ≤ γ0} of deformations of M as follows:

(a) ξ0 is the identity map, i.e. ξ0(t, x) = x for every x ∈M, t ∈ [0, 1];

(b) if γ is not a limit ordinal, ξγ(t, x) = ηγ−1(t, ξγ−1(t, x)) for every x ∈ M, t ∈

[0, 1];

(c) if γ is a limit ordinal, ξγ(t, x) = limβ<γ ξβ(t, x) for every x ∈M, t ∈ [0, 1].

In order such an inductive definition to be correct we need to show that the

limit in (c) exists.

Lemma 3.1. Let ξβ(t, x) be well defined as above and f(ξβ(t, x)) ≤ f(ξα(t, x))

for all β < γ, α ≤ β. Then ξγ(t, x) is well defined and f(ξγ(t, x)) ≤ f(ξβ(t, x)) for all

β ≤ γ.
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P r o o f. There is nothing to prove when x 6∈ Q. Let x ∈ Q. If γ is not a limit

ordinal,

f(ξγ(t, x))=f(ηγ−1(t, ξγ−1(t, x))) ≤

≤f(ξγ−1(t, x)) −
2ε

δ
t

∫ 1

0
αγ−1(ηγ−1(ts, ξγ−1(t, x)))ds ≤ f(ξγ−1(t, x))

because αγ−1(y) ≥ 0 for each y ∈M and we are done.

If γ is a limit ordinal, the generalized sequence {f(ξβ(t, x))}β<γ ⊂ [c−kε, c+kε]

is decreasing by the induction assumption: f(ξα(t, x)) ≤ f(ξβ(t, x)) whenever β ≤ α <

γ. Hence it is convergent and so at most countably many terms of the series

∑

β<γ

[f(ξβ(t, x)) − f(ξβ+1(t, x))]

are non-zero, all of them are nonnegative and the series converges.

We will see that

ρ(ξβ1(t, x), ξβ2(t, x)) ≤
∑

β2≤α<β1

ρ(ξα+1(t, x), ξα(t, x))

whenever β2 < β1 < γ.

We will proceed by induction on β1. Indeed, if β1 is not a limit ordinal, then

ρ(ξβ1(t, x), ξβ2(t, x))≤ρ(ξβ1(t, x), ξβ1−1(t, x)) + ρ(ξβ1−1(t, x), ξβ2(t, x)) ≤

≤
∑

β2≤α<β1

ρ(ξα+1(t, x), ξα(t, x)).

If β1 is a limit ordinal, then ξβ1(t, x) = limβ<β1 ξβ(t, x) and hence

ρ(ξβ1(t, x), ξβ2(t, x))= lim
β<β1

ρ(ξβ(t, x), ξβ2(t, x)) ≤

≤
∑

β2≤α<β1

ρ(ξα+1(t, x), ξα(t, x)).

Now the inequalities (A) and (B) of step 2 yield

ρ(ξβ+1(t, x), ξβ(t, x))≤kt

∫ 1

0
αβ(ηβ(ts, ξβ(t, x)))ds ≤

≤
kδ

2ε
[f(ξβ(t, x)) − f(ξβ+1(t, x))]
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for every β < γ. Therefore

ρ(ξβ1(t, x), ξβ2(t, x)) ≤
kδ

2ε

∑

β2≤α<β1

[f(ξα(t, x)) − f(ξα+1(t, x))].

for each β2 < β1 < γ. But we know that the above series is convergent and hence the

generalized sequence {ξβ(t, x)}β<γ is a Cauchy one. As M is complete, its limit exists

and the lemma is proved. �

We saw that for every fixed (t, x) ∈ [0, 1] ×M our definition is correct. The

following lemmas enable us to show that the so defined ξγ ’s are deformations.

Lemma 3.2. Let 0 < γ ≤ γ0 be a limit ordinal and (t0, x0) ∈ [0, 1]×M . Then

there exist a non-limit ordinal number γ∗ < γ and a neighbourhood U∗ of ξγ(t0, x0)

such that ξγ∗(t, x) = ξγ(t, x) whenever ξγ∗(t, x) ∈ U∗.

P r o o f. The family {Uα}α<γ is locally finite and so there exists a neighbourhood

U∗ of ξγ(t0, x0) which intersects at most finitely many of its members. Let us denote

them by Uα1 , Uα2 , . . . , Uαp and α∗ = max{α1, α2, . . . , αp} (if no Uα, α < γ intersects

U∗, we set α∗ = 0). Now α∗ < γ and as γ is a limit ordinal, the non-limit ordinal

γ∗ = α∗ + 1 is strictly less than γ as well. For the so defined γ∗ and U∗ we will show

that ξβ(t, x) = ξγ∗(t, x) whenever ξγ∗(t, x) ∈ U∗ and β ∈ [γ∗, γ]. We will proceed by

induction on β. Indeed, the initial step β = γ∗ is obvious. If β is a non-limit ordinal,

then ξβ(t, x) = ηβ−1(t, ξβ−1(t, x)) = ηβ−1(t, ξγ∗(t, x)) for ξγ∗(t, x) ∈ U
∗ by the induction

assumption. But as β− 1 ≥ γ∗ > α∗, we have Uβ−1 ∩U
∗ = Ø and so ηβ−1(t, x) = x for

every x ∈ U∗. Hence ξβ(t, x) = ξγ∗(t, x) if ξγ∗(t, x) ∈ U∗ and we are done.

If β is limit, ξβ(t, x) = limα<β ξα(t, x) = limα<β ξγ∗(t, x) = ξγ∗(t, x) for ξγ∗(t, x)

∈ U∗ by the induction assumption.

Therefore ξγ(t, x) = ξγ∗(t, x) if ξγ∗(t, x) ∈ U∗ and the lemma is proved. �

Lemma 3.3. Let (t0, x0) ∈ [0, 1] ×M,γ ≤ γ0 and U be an arbitrary neigh-

bourhood of ξγ(t0, x0). Then there exist a neighbourhood V of x0, a neighbourhood W

of t0 and finitely many ordinals γ > β1 > β2 > · · · > βs ≥ 0 such that ξγ(t, x) =

ηβ1(t, ηβ2(t, . . . , ηβs−1(t, ηβs
(t, x)) . . .)) and ξγ(t, x) ∈ U for every (t, x) ∈ W × V , i.e.

ξγ : [0, 1]×M →M is continuous and locally it is a composition of finitely many of the

diffeomorphisms {ηβ}β<γ .

P r o o f. To every ordinal number β ∈ (0, γ] we can assign an ordinal number

β < β in the following way: β is β − 1 if β is nonlimit and β is β∗ − 1 if β is limit

where β∗ is the ordinal number assigned to β by the previous lemma. In such a way
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we obtain a strictly decreasing sequence

γ = β0 > β0 = β1 > β1 = β2 > . . .

of ordinal numbers. Therefore this sequence is a finite one:

γ = β0 > β0 = β1 > β1 = β2 > . . . > βs−1 = βs = 0.

We will denote by U0 the set U .

Let us fix an arbitrary i ∈ {0, 1, 2, . . . , s−1}. Now ξβi
(t, x) = ηβi+1

(t, ξβi+1
(t, x)) ∈

U∗ everywhere if βi is not limit, and when ξβi
(t, x) ∈ U∗

i (where U∗
i is the neighbour-

hood of ξβi
(t0, x0) obtained by the previous lemma), if βi is limit.

Let Ũi be Ui itself or Ui ∩U
∗
i in the limit-ordinal case. The continuity of ηβi+1

:

[0, 1] ×M → M at the point (t0, ξβi+1
(t0, x0)) yields the existence of a neighbourhood

Ui+1 of ξβi+1
(t0, x0) and a neighbourhood Wi of t0 such that ηβi+1

(t, y) ∈ Ũi whenever

t ∈ Wi and y ∈ Ui+1, i.e. ξβi
(t, x) ∈ Ũi for every (t, x) with t ∈ Wi and ξβi+1

(t, x) ∈

Ui+1.

To finish the proof we set V = Us to be the desired neighbourhood of x0 and

W =
s−1
⋂

i=0

Wi to be the desired neighbourhood of t0.

Indeed, a back-going induction on i ∈ {0, 1, 2, . . . , s} shows that if (t, x) ∈

W × V , then ξγ(t, x) ∈ U and ξγ(t, x) = ηβ1(t, ηβ2(t, . . . (ηβs−1(t, ηβs
(t, x))))) by the

above paragraph. �

In the notations from the proof of the above lemma we have the following

properties of ξγ which correspond to the properties (A), (B) and (C) of the elementary

deformations {ηγ}γ<γ0 in step 2:

(A′)

ρ(x, ξγ(t, x)) ≤
s−1
∑

i=0

ρ(ξβi
(t, x), ξβi+1

(t, x)) =

=
s−1
∑

i=0

ρ(ηβi+1
(t, ξβi+1

(t, x)), ξβi+1
(t, x)) ≤ kt

s−1
∑

i=0

∫ 1

0
αβi+1

(ηβi+1
(ts, ξβi+1

(t, x)))ds;

(B′)

f(ξγ(t, x)) − f(x) =
s−1
∑

i=0

[f(ξβi
(t, x)) − f(ξβi+1

(t, x))] =

=
s−1
∑

i=0

[f(ηβi+1
(t, ξβi+1

(t, x))) − f(ξβi+1
(t, x))] ≤

≤ −
2ε

δ
t
s−1
∑

i=0

∫ 1

0
αβi+1

(ηβi+1
(ts, ξβi+1

(t, x)))ds;
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(C ′) ξγ(t, .) is a local diffeomorphism for every (t, x) ∈W × V, γ ≤ γ0.

In particular, ρ(ξγ(t, x), x) ≤
kδ
2ε [f(x) − f(ξγ(t, x))] whenever γ ≤ γ0, x ∈M, t ∈ [0, 1].

Step 4. Construction of η.

Let us denote the ”maximal” of the deformations constructed in the previous

step by ξ (i.e. ξ = ξγ0). We will define ξn inductively as follows:

ξ0(t, x) = x; ξn+1(t, x) = ξ(t, ξn(t, x))

for every x ∈M, t ∈ [0, 1] and positive integer n.

To go ahead, one needs to know something about the behaviour of the defor-

mation ξ with respect to the level of the function f .

Lemma 3.4. Let x0 ∈ S ∩ f−1((−∞, c + ε]) and let t0 ∈ (0, 1] be positive.

Then there exist a positive integer m, a neighbourhood U of x0 and a neighbourhood W

of t0 such that f(ξm(t, x)) < c− ε for every x ∈ U, t ∈W .

P r o o f. Let us consider the sequences {ξn(t0, x0)}
∞
n=1 ⊂M and

{f(ξn(t0, x0))}
∞
n=1 ⊂ R. The second one is decreasing by the property (B′) in step

3. Moreover, it is bounded below because either x0 6∈ Q and then ξn(t0, x0) = x0 for

every n, or x0 ∈ Q and then ηγ(t0, x) ∈ Q for x ∈ Q, γ ∈ Γ yield ξn(t0, x0) ∈ Q. Thus

f(ξn(t0, x0)) ≥ c−kε for every n. Hence the sequence is convergent and so is the series

∞
∑

n=0

[f(ξn(t0, x0)) − f(ξn+1(t0, x0))].

But

ρ(ξn+1(t0, x0), ξ
n(t0, x0))=ρ(ξ(t0, ξ

n(t0, x0)), ξ
n(t0, x0)) ≤

≤
kδ

2ε
[f(ξn(t0, x0)) − f(ξn+1(t0, x0))]

by the property at the end of the previous step. Therefore {ξn(t0, x0)}
∞
n=1 is a Cauchy

sequence. Let us denote its limit by z.

We will show that z 6∈ Q. Indeed, let us assume the contrary. Then there exists

γ∗ ∈ Γ so that z ∈ Uγ∗ and αγ∗(z) > 0. Let µ > 0, r > 0 be two positive reals such

that αγ∗(x) ≥ µ for every x with ρ(z, x) ≤ r. The convergence of the sequence yields

the existence of n0 with ρ(z, ξn(t0, x0)) ≤
r

2
whenever n ≥ n0. Let us fix an arbitrary

positive integer n ≥ n0. By Lemma 3.3 there exists a neighbourhood of ξn(t0, x0) so

that ξ(t0, .) is a composition of finitely many elementary deformations on it, say

ξ = ηβ1 ◦ ηβ2 ◦ . . . ◦ ηβs
.
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The decreasing property from Lemma 3.1 gives

f(ξn+1(t0, x0)) ≤ f(ξβi
(t0, ξ

n(t0, x0))) ≤ f(ξn(t0, x0))

and hence

ρ(ξn(t0, x0), ξβi
(t0, ξ

n(t0, x0)))≤
kδ

2ε
[f(ξn(t0, x0)) − f(ξβi

(t0, ξ
n(t0, x0))] ≤

≤
kδ

2ε

[

f(ξn(t0, x0)) − f(ξn+1(t0, x0))
]

.

Therefore

ρ(ξn(t0, x0), ξβi
(t0, ξ

n(t0, x0))) ≤
r

2
for every i = 0, 1, 2, ..., s and for every n which is big enough, say n ≥ n1 ≥ n0. So we

have αγ∗(ξβi
(t0, ξ

n(t0, x0))) ≥ µ for each i ∈ {0, 1, 2, . . . , s}. Moreover, every

path {ηβi+1
(t0s, ξβi+1

(t0, ξ
n(t0, x0))) : s ∈ [0, 1]} between ξβi+1

(t0, ξ
n(t0, x0)) and

ξβi
(t0, ξ

n(t0, x0)) is in {x : ρ(x, z) ≤ r} for n ≥ n1 too, because f decreases along the

integral lines of ηβi+1
and the above argument aplies.

As ξ is actually the composition of all {ηγ}γ<γ0 and every intermediate point

ξβ(t0, ξ
n(t0, x0)), β ≤ γ0 is in Uγ∗, ηγ∗ must act nontrivially, i.e. there exists i ∈

{1, 2, . . . , s} with γ∗ = βi. Then

s−1
∑

i=0

∫ 1
0 αβi+1

(ηβi+1
(t0s, ξβi+1

(t0, ξ
n(t0, x0))))ds ≥

≥
∫ 1
0 αγ∗(ηγ∗(t0s, ξγ∗(t0, ξ

n(t0, x0))))ds.

So by (B′) and ηγ∗(t0s, ξγ∗(t0, ξ
n(t0, x0))) ⊂ {x : ρ(x, z) ≤ r} we have

f(ξn+1(t0, x0)) − f(ξn(t0, x0)) ≤

≤ −
2ε

δ
t0

∫ 1

0
αγ∗(ηγ∗(t0s, ξγ∗(t0, ξ

n(t0, x0))))ds ≤ −
2ε

δ
t0µ.

Thus f(ξn(t0, x0)) − f(ξn+1(t0, x0)) ≥
2ε

δ
t0µ > 0 for every n ≥ n1 which contradicts

the convergence of the series
∑∞
n=0[f(ξn(t0, x0)) − f(ξn+1(t0, x0))]. So we proved that

z 6∈ Q.

On the other hand

ρ(x0, z)= lim
n→∞

ρ(x0, ξ
n(t0, x0)) ≤

∞
∑

n=0

ρ(ξn(t0, x0), ξ
n+1(t0, x0)) ≤

≤
kδ

2ε

∞
∑

n=0

[f(ξn(t0, x0)) − f(ξn+1(t0, x0))] =
kδ

2ε
(f(x0) − f(z)) ≤

kδ

2ε
(c+ ε− f(z)).
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If we assume that f(z) ≥ c− ε, we have

ρ(x0, z) ≤
kδ

2ε
(c+ ε− f(z)) ≤

kδ

2ε
(c+ ε− c+ ε) = kδ.

Hence z ∈ Skδ because x0 ∈ S, i.e. dist(x0, S) = 0. But f(z) = limn→∞ f(ξn(t0, x0)) ≤

f(x0) ≤ c + ε and so z ∈ f−1([c − ε, c + ε]) ∩ Skδ ⊂ Q. This contradicts our result

z 6∈ Q. Thus f(z) < c − ε. This gives us the existence of a positive integer m with

f(ξm(t0, x0)) < c − ε. But ξm : [0, 1] × M → M and f : M → R are continuous

mappings. Therefore there exist a neighbourhood W of t0 and a neighbourhood U of

x0 such that f(ξm(t, x)) < c− ε whenever x ∈ U and t ∈W . The lemma is proved. �

We go back to the construction of the desired deformation η. We first define ξa

for a ≥ 0 by

ξa(t, x) = ξ((a− [a])t, ξ[a](t, x))

where [a] is the largest integer not greater than a. If a is integer, then

ξa(t, x) = ξ(0.t, ξa(t, x)) = ξa(t, x)

and so this definition agrees with the one given at the beginning of this step. It is

straightforward to check that the so defined ξa(t, x) is a jointly continuous function for

(a, t, x) ∈ [0,∞) × [0, 1] ×M .

Lemma 3.4 assigns to every point x ∈ S ∩ f−1([c − ε, c + ε]) an open neigh-

bourhood Vx ⊂ Q of x and a positive integer mx so that f(ξmx(1, y)) < c− ε for every

y ∈ Vx. Now {Vx}x∈S∩f−1([c−ε,c+ε]) is an open covering of S ∩ f−1([c − ε, c + ε]). Let

{Vβ}β∈B be a locally finite refinement of it. We denote bymβ one of the positive integers

mx for which Vβ ⊂ Vx. There exists a partition of unity {aβ}β∈B subordinated to

{Vβ}β∈B , i.e. aβ : M → [0, 1] are continuous, aβ(x) > 0 iff x ∈ Vβ and
∑

β∈B aβ(x) = 1

for every x in the closed set S ∩ f−1([c − ε, c + ε]).

At last, we are ready to define

η(t, x) = ξ

∑

β∈B
aβ(x)mβ

(t, x)

for every t ∈ [0, 1], x ∈M .

The continuity of aβ and of ξa(t, x) as a function of (a, t, x) gives us the conti-

nuity of η : [0, 1] ×M → M as a superposition of continuous functions. We will check

that η satisfies the conditions (i) ÷ (iv). For the rest of this section a(x) will denote
∑

β∈B aβ(x)mβ :

(i) η(0, x) = ξa(x)(0, x) = ξ((a(x) − [a(x)]).0, ξ[a(x)](0, x)) = ξ[a(x)](0, x) = x;
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(ii) Let x 6∈ Q. Then aβ(x) = 0 for every β ∈ B and hence η(t, x) = ξ0(t, x) = x for

every t ∈ [0, 1];

(iii) Let x ∈ S ∩ f−1((−∞, c + ε]). We know that f(ξmβ(1, x)) < c − ε whenever

x ∈ Vβ from the choice of mβ. Let m = min{mβ : x ∈ Vβ}. If f(x) ≥ c − ε, then
∑

β∈B aβ(x) = 1 and so

a(x) =
∑

β∈B

aβ(x).mβ ≥ m

yields [a(x)] ≥ m. Hence

f(η(1, x))=f(ξa(x)(1, x)) = f(ξ(a(x) − [a(x)], ξ[a(x)](1, x))) ≤

≤f(ξ[a(x)](1, x)) ≤ f(ξm(1, x)) < c− ε.

If f(x) < c − ε, then f(η(1, x)) = f(ξa(x)(1, x)) ≤ f(x) < c − ε. Therefore η(1, x) ∈

f−1((−∞, c− ε]).

From (iv) below x ∈ S yields dist(η(1, x), S) ≤ dist(η(1, x), x) ≤ k2δ. Thus

η(1, S ∩ f−1((−∞, c+ ε])) ⊂ f−1((−∞, c − ε]) ∩ Sk2δ.

(iv)

ρ(x, η(t, x)) = ρ(x, ξa(x)(t, x)) = ρ(x, ξ((a(x) − [a(x)])t, ξ[a(x)](t, x))) ≤

≤ ρ(x, ξ[a(x)](t, x)) + ρ(ξ[a(x)](t, x), ξ((a(x) − [a(x)])t, ξ[a(x)](t, x))) ≤

≤
kδ

2ε
[f(ξ[a(x)](t, x)) − f(η(t, x))] +

[a(x)]−1
∑

i=0

ρ(ξi+1(t, x), ξi(t, x)) ≤

≤
kδ

2ε
[f(ξ[a(x)](t, x)) − f(η(t, x))] +

[a(x)]−1
∑

i=0

kδ

2ε
[f(ξi(t, x)) − f(ξi+1(t, x))] =

=
kδ

2ε
[f(ξ[a(x)](t, x)) − f(η(t, x))] +

kδ

2ε
[f(x) − f(ξ[a(x)](t, x))] =

=
kδ

2ε
[f(x) − f(η(t, x))]

for every x ∈M, t ∈ [0, 1].

If x ∈ Q, then η(1, x) ∈ Q as well and hence f(x) and f(η(1, x)) are in [c −

kε, c + kε]. Therefore ρ(x, η(t, x)) ≤
kδ

2ε
[(c+ kε) − (c− kε)] =

kδ

2ε
2kε = k2δ. If x 6∈ Q,

then η(1, x) = x and ρ(x, η(1, x)) = 0 < k2δ, i.e. the deformation lemma is proved in

the case when M is connected.
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Next, supposing that M is not connected, let Mα for α from some index set A

be all components of M . Let A1 ⊂ A be the set of all α with

{x ∈M : x ∈ f−1([c− ε, c+ ε]) ∩ S} ∩Mα 6= Ø.

Clearly A1 6= Ø because otherwise f−1([c − ε, c + ε]) ∩ S = Ø and there is nothing to

prove. Now Qα = Q ∩Mα is an open neighbourhood of f−1([c − ε, c + ε]) ∩ Skδ ∩Mα

in Mα. Let ηα ∈ C([0, 1] × Mα,Mα) be the above constructed deformation of Mα.

Defining η(t, x) = ηα(t, x) for (t, x) ∈ [0, 1] ×Mα when α ∈ A1 and η(t, x) = x for

all t ∈ [0, 1] and x from all other components of M we obtain η ∈ C([0, 1] ×M,M)

satisfying (i)÷(iv). The deformation lemma is thus proved. �

4. Ljusternik-Schnirelmann theory on C
1
−Finsler manifolds. Here we

apply the deformation lemma from the previous section for proving the result of R. S.

Palais (Theorem 1.1) for a locally Lipschitz function defined on a C1−Finsler manifold.

Theorem 4.2 below includes as a particular case the respective result of A. Szulkin –

Theorem 3.1 on p. 126 in [13].

We begin with recalling the necessary definitions:

Definition 4.1. Let M be a Banach manifold. The mapping η ∈ C([0, 1] ×

M,M) is called deformation of M if η(0, x) = x for every x ∈M .

Definition 4.2. Let F be a family of subsets of a Banach manifold M . We

shall say that F is deformation invariant if, given A ∈ F and a deformation η of M ,

η(1, A) ∈ F holds true, where η(1, A) = {x : x = η(1, y), y ∈ A}.

Definition 4.3. Let M be a Banach manifold, f : M → R and F be a family

of subsets of M . We denote by minimax(f,F) the number inf{sup{f(x) : x ∈ A} :

A ∈ F}.

Definition 4.4. Let M be a C1−Banach manifold and f : M → R be locally

Lipschitz. The real number c is said to be a critical value of f iff there exists x ∈ M

(called critical point of f) such that c = f(x) and 0 ∈ ∂f(x).

When proving existence of critical points, one imposes some kind of compactness

condition (of Palais-Smale type) on the considered function. In this section we shall

need such a condition which is stronger than the respective one used in the next section.

Definition 4.5. ([13], Remark 3.4 on p. 131) Let M be a C1−Finsler

manifold, c ∈ R and f : M → R be locally Lipschitz. We say that f satisfies the
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condition (sPS)c if, whenever a sequence {xn}
∞
n=1 is such that c = limn→∞ f(xn) and

lim inf stf(xn) ≥ 0, then c is critical value of f and

inf {inf {ρ(xn, z) : z ∈Mxn ∩Kc} : n ≥ 1} = 0

where Mx is the component of M containing x ∈M , Kc = {x ∈M : f(x) = c and 0 ∈

∂f(x)} is the set of the critical points at level c and ρ is the Finsler metric on each

component of M .

The next theorem will be applied in the proof of Theorem 4.2 below.

Theorem 4.1 (minimax theorem). Let M be a complete C1−Finsler manifold

without boundary and f : M → R be a locally Lipschitz function. Let F be a deformation

invariant family of subsets of M such that

−∞ < minimax(f,F) < +∞.

Let c = minimax(f,F) and let f satisfy the (sPS)c condition. Then c is a critical

value of f .

P r o o f. Let us assume the contrary, i.e. that c is not a critical value. We claim

that in this case there exist ε > 0 and β > 0 such that stf(x) < −β for each x ∈

f−1((c−2ε, c+2ε)). If this claim was not true, we could find a sequence {xn}
∞
n=1 ⊂M

such that c − 1
n < f(xn) < c + 1

n and stf(xn) ≥ −
1

n
for each natural n. Because of

the (sPS)c condition this means that c is a critical value of f which contradicts our

assumption.

Applying the deformation lemma with S = M,Q = f−1((c − 2ε, c + 2ε)) and

δ = 2ε/β we obtain a deformation η ∈ C([0, 1] ×M,M) such that η(1, f−1((−∞, c +

ε])) ⊂ f−1((−∞, c − ε]). By the definition of c there is a nonempty A ∈ F with

A ⊂ f−1((−∞, c+ ε]). Then η(1, A) ⊂ f−1((−∞, c− ε]). Since η(1, A) ∈ F we have

c = minimax(f,F) ≤ sup{f(x) : x ∈ η(1, A)} ≤ c− ε

which is a contradiction. This completes the proof. �

Remark 4.1. For proving Theorem 4.1 it is sufficient to impose on f the

weaker Palais-Smale condition from definition 5.2 below.

In what follows we shall need the notions of Ljusternik-Schnirelmann category.

Definition 4.6. ([13], p.124). Let M be a topological space. A set A ⊂ M is

said to be of category k in M (denoted catM (A) = k) if it can be covered by k but not
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by k − 1 closed sets which are contractible to a point in M . If such k does not exist,

catM (A) = +∞.

The next two properties of the category follow directly from the definition.

Proposition 4.1. (a) If A ⊂ B, then catM (A) ≤ catM (B);

(b) catM (A ∪B) ≤ catM (A) + catM (B).

The main result in this section is

Theorem 4.2. Let M be a complete C1−Finsler manifold without bound-

ary and f : M → R be a locally Lipschitz function which is bounded below. Let

catM (M) = k, where k is a natural number or k = +∞. Let Λj = {A ⊂ M :

A is closed and catM (A) ≥ j} and cj = inf{sup{f(x) : x ∈ A} : A ∈ Λj} for

j = 1 ÷ k. If f satisfies the (sPS)c condition for all c = cj , j = 1 ÷ k and for all

c > sup {f(x) : x ∈ K}, where K is the set of all critical points of f , then f has at

least k distinct critical points.

P r o o f. If sup {f(x) : x ∈ K} = +∞ then K is infinite and the assertion of

the theorem holds true.

Let sup {f(x) : x ∈ K} < +∞. Then we shall prove that cj ≤ sup {f(x) :

x ∈ K} for every j = 1, . . . , k. Indeed, if c > sup {f(x) : x ∈ K} we obtain that the

set f−1([c,+∞)) does not contain any critical values of f . Because of the condition

(sPS)c, for every d ≥ c there exist εd > 0 and αd > 0 such that st f(x) ≤ −αd for every

x ∈ f−1((d− 2εd, d+ 2εd)). Applying the deformation lemma we obtain the existence

of a deformation ηd such that ηd(1, f
−1((−∞, d+ εd]) ⊂ f−1((−∞, d − εd]).

So, we can find countably many numbers dn, εn > 0, and deformations ηn, n =

1, 2, . . . such that
∞
⋃

n=1

(dn − εn, dn + εn) ⊃ [c,+∞),

(and every compact interval [c, d] is covered by finitely many intervals (dn−εn, dn+εn))

dn + εn > dn+1 − εn+1, c ≤ dn < dn+1,

ηn(1, f
−1((−∞, dn + εn)) ⊂ f−1((−∞, dn − εn)), n = 1, 2, . . .

Next we define inductively the deformations ξn, n = 1, 2, . . ., as follows: ξ0(t, x) =

x and ξn+1(t, x) = ξn(t, ηn+1(t, x)) for all x ∈M and t ∈ [0, 1].

By setting ξ(t, x) = limn→∞ ξn(t, x) we define a deformation for which ξ(1,M) ⊂

f−1((−∞, c− ε]), where ε = c− d1 + ε1 > 0.
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Indeed, let x be an arbitrary point from M . If f(x) ≤ c − ε = d1 − ε1, then

f(ξ(1, x)) ≤ f(x). Let x ∈ f−1([c − ε,+∞)). Then there exists a positive integer k

such that f(x) < inf {f(y)| y ∈ ∪∞
n=k+1 f

−1(dn − 3εn, dn + 2εn)}. Because of the

deformation lemma we have that ηn(t, y) = y for every n ≥ k + 1, t ∈ [0, 1] and

every point y ∈ f−1((−∞, f(x) + εk+1)). Therefore ξ(t, y) = ξk(t, y) for t ∈ [0, 1] and

y ∈ f−1((−∞, f(x)+εk+1)). This shows that ξ depends continuously on its arguments.

Next we prove by induction on n that if f(x) ≤ dn + εn then

f(ξn(1, x)) ≤ d1 − ε1.

Let n = 1 and f(x) ≤ d1 + ε1. Then ξ1(1, x) = η(1, x) and hence ξ1(1, x) ≤ d1 − ε1.

Let us assume that this is true for n. For n + 1 we have that if f(x) ≤ dn+1 + εn+1

then f(ηn+1(1, x)) ≤ dn+1 − εn+1 ≤ dn + εn. Applying our induction assumption and

the equality ξn+1(1, x) = ξn(1, ηn+1(1, x)) we obtain that f(ξn+1(1, x)) ≤ d1 − ε1.

We obtained already that ξ(1, x) = ξk(1, x), and hence f(ξ(1, x)) = f(ξk(1, x)) ≤

d1 − ε1 = c − ε. Since x was arbitrarily fixed point from the set f−1([c − ε,+∞)), we

proved in such a way that ξ(1,M) ⊂ f−1((−∞, c− ε]).

So, if j ≤ catM (M) then because of the relations

catM (M) ≤ catM (ξ(1,M)) ≤ catM (f−1((−∞, c− ε]),

we obtain that cj ≤ c − ε < c. Since c was an arbitrary real number greater than

sup{f(x)| x ∈ K}, we have that cj ≤ sup{f(x)| x ∈ K} .

Since Λj+1 ⊂ Λj, we have cj ≤ cj+1. We already proved that ck ≤ sup{f(x)| x ∈

K} < +∞. Moreover

−∞ < inf{f(x) : x ∈M} ≤ inf{f(x) : x ∈ A}

for each A ∈ Λ1 and, hence, −∞ < c1. We thus proved that

−∞ < c1 ≤ c2 ≤ . . . ≤ ck < +∞.

Let Kc = {x ∈M : f(x) = c and 0 ∈ ∂f(x)} for c ∈ R. According to Theorem

6.2.(3) in [9] Λj is deformation invariant for all j = 1, 2, . . . , k. Then Theorem 4.1

implies that Kc 6= Ø for c = cj , j = 1 ÷ k.

Given j, suppose cj = cj+1 = . . . = cj+p for some p ≥ 0. If Kc is noncompact

we are done.

Let Kc be a compact subset ofM . Then by Theorem 5 in [8] and Theorem 6.3 in

[9] there are µ > 0 and a 2µ-neighbourhood U2µ ofKc such that catM (U2µ) = catM (Kc).
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We next prove that there are β > 0 and ε0 > 0 such that stf(x) < −β for each

x ∈ f−1((c − 2ε0, c + 2ε0)) \ Uµ. Indeed, if it was not the case, then there would be

a sequence {xn}
∞
n=1 ⊂ M \ Uµ such that c − 1

n ≤ f(xn) ≤ c + 1
n and stf(xn) ≥ − 1

n .

Then the (sPS)c condition yields a point x0 ∈ Kc ∩ (M \ Uµ) which is a contradiction

because Kc ⊂ Uµ.

Let k > 1 be the constant in the formulation of the deformation lemma and

ε ∈ (0, ε0) be such that 2ε/β < µ/k. Now we apply the deformation lemma with

this ε, δ ∈ (2ε/β, µ/k), S = M \ U2µ and Q = f−1((c − 2ε0, c + 2ε0)) \ Uµ. Hence

η(1, f−1((−∞, c + ε]) \ U2µ) ⊂ f−1((−∞, c − ε]) and therefore (using Theorem 6.2.(3)

in [9])

catM (f−1((−∞, c− ε])≥catM (η(1, f−1((−∞, c + ε]) \ U2µ) ≥

≥catM (f−1((−∞, c+ ε]) \ U2µ).

By the Proposition 4.1 we have

catMf
−1((−∞, c+ ε])≤catM (f−1((−∞, c + ε]) ∪ U2µ) ≤

≤catM (f−1((−∞, c + ε]) \ U2µ) + catM (U2µ) ≤

≤catM (f−1((−∞, c − ε])) + catM (Kc).

Hence

catM (Kc) ≥ catM (f−1((−∞, c+ ε])) − catM (f−1((−∞, c− ε])).

Since c = cj = . . . = cj+p, we obtain catM (f−1((−∞, c + ε])) ≥ j + p and

catM (f−1((−∞, c − ε])) ≤ j − 1. Finally catM (Kc) ≥ j + p − (j − 1) = p+ 1 which

means that the set Kc contains at least p+ 1 points. This completes the proof. �

Remark 4.2. When M is compact the assumption that f satisfies (sPS)c for

all c > sup {f(x) : x ∈ K} is not needed because in this case cj < +∞ for j = 1 ÷ k.

5. Min-max principle and mountain pass theorem. In this section we

establish a general min-max principle (Theorem 5.1) using the deformations constructed

in Section 3. As a corollary we obtain a general version of the mountain pass theorem

(Theorem 5.2).

Here is the setting: Let M be a complete C1−Finsler manifold without boun-

dary and f : M → R be locally Lipschitz. Let F be a family of subsets of M and F be
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a subset of M . Throughout this section we shall denote

c(F, f,F) = inf{sup{f(x) : x ∈ A ∩ F} : A ∈ F}

and in particular

c = c(M,f,F) = inf {sup {f(x) : x ∈ A} : A ∈ F}.

We shall also use the conventional notations

dist(F,B) = inf {ρ(x, y) : x ∈ F, y ∈ B}

and

dist(x,B) = inf{ρ(x, y) : y ∈ B}

for x ∈M,F ⊂M,B ⊂M,M being a metric space with metric ρ.

Definition 5.1 (cf. [5]) Let B ⊂ M . We shall say that a class F of subsets

of M is a homotopy stable family with boundary B if

(a) every set in F contains B;

(b) for any set A in F and any η ∈ C([0, 1] ×M,M) verifying η(t, x) = x for all (t, x)

in ({0} ×M) ∪ ([0, 1] ×B) we have η(1, A) ∈ F , where

η(1, A) = {x ∈M : x = η(1, y) for some y ∈ A}.

Theorem 5.1. Let M be a complete connected C1−Finsler manifold without

boundary, f : M → R be locally Lipschitz, k ∈ (1, 5
4 ),F be a homotopy stable family of

subsets of M with boundary B and F be a subset of M verifying

(2) dist(F,B) > 0 and F ∩A 6= Ø for all A ∈ F

and

(3) inf{f(x) : x ∈ F} ≥ c.

Let ε ∈ (0,dist(F,B)/2). Then for every A ∈ F satisfying

sup{f(x) : x ∈ A ∩ Fk2ε/3} < c+
ε2

12



262 Nadezhda Ribarska, Tsvetomir Tsachev, Michail Krastanov

there exists xε ∈M with the properties:

(i) c−
ε2

6
≤ f(xε) ≤ c+

5ε2

12
(ii) stf(xε) ≥ −ε

(iii) dist(xε, F ) ≤ ε

(iv) dist(xε, A) ≤ ε.

P r o o f. We first note that (2) and (3) imply c(F, f,F) = c(M,f,F) = c. Hence

there is A ∈ F (appearing in the formulation of the theorem) satisfying

sup{f(x) : x ∈ A ∩ Fk2ε/3} < c+
ε2

12

because

c = c(F, f,F) ≤ c(Fk2ε/3, f,F) ≤ c(M,f,F) = c.

We set

ψε(x) = max{0,
ε2

4
−
ε

2
.dist(x, F )}

fε(x) = f(x) + ψε(x)

for x ∈M , and cε = c+
ε2

4
. It is easy to check that cε ≤ c(F, fε,F) ≤ c(M,fε,F) ≤ cε.

Since 0 ≤ ψε(x) ≤
ε2

4
for each x ∈M ,

sup{fε(x) : x ∈ A ∩ Fk2ε
3

} < cε +
ε2

12

holds true.

Let us choose S to be the set A ∩ Fk2ε/3. Then

Skε/3 = (Fk2ε/3 ∩A)kε/3 ⊂ F(k2+k)ε/3 ∩Akε/3.

Since k <
5

4
, the set

Qε = int(f−1
ε ([cε −

ε2

6
, cε +

ε2

6
]) ∩ Fε ∩Aε)

is an open neighbourhood of f−1
ε ([cε −

ε2

12
, cε +

ε2

12
]) ∩ Skε/3.

We claim that there exists

xε ∈ f−1
ε ([cε −

ε2

6
, cε +

ε2

6
]) ∩ Fε ∩Aε
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such that stfε(xε) ≥ −
ε

2
. Supposing the contrary, we apply the deformation lemma for

the following choice of f, S, c, ε, δ, k and Q respectively: fε, A ∩ Fk2ε/3, cε, ε
2/12, ε/3, k

and Qε. We thus obtain η ∈ C([0, 1] ×M,M) satisfying the following properties:

(a) η(0, x) = x for each x ∈M ;

(b) η(t, x) = x for each (t, x) ∈ ([0, 1] ×M \Qε);

(c) η(1, f−1
ε ((−∞, cε + ε2/12]) ∩A ∩ Fk2ε/3) ⊂ f−1

ε ((−∞, cε − ε2/12]);

(d) ρ(x, η(1, x)) ≤ k2ε/3 for each x ∈M .

Let A1 = η(1, A). Since Qε ⊂ Fε we have B ∩Qε = Ø and, hence, η(t, x) = x

for all (t, x) ∈ ([0, 1] × B). Since F is homotopy stable with boundary B, we have

A1 ∈ F . It follows from (d) that A1∩F ⊂ η(1, A∩Fk2ε/3). But because of A∩Fk2ε/3 ⊂

f−1
ε ((−∞, cε + ε2/12]), (c) implies η(1, A ∩ Fk2ε

3

) ⊂ f−1
ε ((−∞, cε − ε2/12]). Then

cε = c(F, fε,F) ≤ sup{fε(x) : x ∈ A1 ∩ F} ≤ cε −
ε2

12

which is a contradiction. Hence there is

xε ∈ f−1
ε ([cε −

ε2

6
, cε +

ε2

6
]) ∩ Fε ∩Aε

with stfε(xε) ≥ −ε/2, i. e. xε satisfies (iii) and (iv). Moreover,

f(xε) = fε(xε) − ψε(xε) ≤ cε +
ε2

6
= c+

ε2

4
+
ε2

6
= c+

5ε2

12

and

f(xε) = fε(xε) − ψε(xε) ≥ cε −
ε2

4
−
ε2

6
= c−

ε2

6
,

i.e. xε satisfies (i).

Finally, since fε = f+ψε, using Lemma 2.2 we get f◦ε (x, h) ≤ f◦(x, h)+ψ◦
ε(x, h)

for every x ∈ M and h ∈ Tx(M) with ‖h‖Tx(M) = 1. Hence stf(x) ≥ stfε(x) +

inf{−ψ◦
ε(x, h) : ‖h‖Tx(M) = 1}. But ψε is a globally Lipschitz function with Lipschitz

costant ε
2 . It follows then from Lemma 2.4 that | − ψ◦

ε(x, h)| ≤ ε/2 for every x ∈ M

and h ∈ Tx(M) with ‖h‖Tx(M) = 1. So we obtain

st f(xε) ≥ st fε(xε) −
ε

2
≥ −

ε

2
−
ε

2
= −ε.

and the proof of the theorem is complete. �

Remark 5.1. Our Theorem 5.1 includes as a special case Theorem 1.ter

in [5] (and, hence, Theorem 1 in [5]) when the compact Lie group appearing in their
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formulation is the identity. Here we drop the compactness assumption on the elements

of F and consider locally Lipschitz functions instead of C1 ones. Theorem 2.2 in [3] is

also a corollary of Theorem 5.1.

The Palais-Smale condition we shall need in the mountain pass theorem below

is weaker than the one given in Definition 4.5.

Definition 5.2. Let M be a C1−Finsler manifold, c ∈ R and f : M → R be

locally Lipschitz. We say that f satisfies the condition (PS)c if, whenever a sequence

{xn}
∞
n=1 is such that c = limn→∞ f(xn) and lim inf st f(xn) ≥ 0, then c is a critical

value of f .

Next we introduce the final necessary notation: Let u, v be two distinct points

of the connected C1−Finsler manifold M . We denote

Γ = {g ∈ C([0, 1],M) : g(0) = u, g(1) = v}

(the set of paths connecting u and v).

Theorem 5.2. Let M be a complete connected C1−Finsler manifold without

boundary, f : M → R be locally Lipschitz, D be a closed subset of M and u, v be

two points from M belonging to disjoint components of M \D. Assume c(M,f,Γ) =

c(D, f,Γ) = c. If f verifies (PS)c then c is a critical value of f .

P r o o f. The assumption c(M,f,Γ) = c(D, f,Γ) = c and the compactness

of all g ∈ Γ yield that u and v belong to disjoint components of M \ D1, where

D1 = {x ∈ D : f(x) ≥ c}. We apply Theorem 5.1 with F = Γ, B = {u, v} and F = D1.

Since D1 is closed and B is compact, D1 ∩ B = Ø implies that dist(D1, B) > 0. Since

u, v belong to disjoint components of M \ D1,D1 ∩ g 6= Ø for all g ∈ Γ and thus (2)

is satisfied. The definition of D1 implies (3). The family Γ is clearly homotopy stable.

Next we combine (i) and (ii) with the (PS)c condition to end the proof. �

Remark 5.2. It is obvious that (iii) and (iv) from Theorem 5.1 combined

with the usual stronger Palais-Smaile conditions, if imposed on f , will yield information

about the location of the established critical points (cf. Theorem 1 (ii) in [11]). Theorem

5.2 includes as special cases Theorem 1 (i) in [11] where f is defined on a Banach space,

as well as Theorem 1 in [12] where f is defined on a C2−−Finsler manifold.
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