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ALGORITHMIC MINIMIZATION OF NON-ZERO ENTRIES IN 0,1-MATRICES 

Adriana Toni, Juan Castellanos, Jose Erviti 

Abstract:  In this paper we present algorithms which work on pairs of 0,1- matrices which multiply again a matrix 
of zero and one entries. When applied over a pair, the algorithms change the number of non-zero entries present 
in the matrices, meanwhile their product remains unchanged. We establish the conditions under which the 
number of 1s decreases. We recursively define as well pairs of matrices which product is a specific matrix and 
such  that by applying on them these algorithms, we minimize the total number of non-zero entries present in both 
matrices. These matrices may be interpreted as solutions for a well known information retrieval problem, and in 
this case the number of 1 entries represent the complexity of the retrieve and information update operations. 

Keywords: zero-one matrices, analysis of algorithms and problem complexity, data structures, models of 
computation 

Introduction 
We introduce some notation and concepts that will be useful from now on.  
Let m

jiI ,  denote the matrix resulting from permuting the ith and jth rows in the identity matrix of dimensions m × m, 

denoted Im. For any matrix M of dimensions m × n,   m
jiI ,  × M returns the matrix M in which rows i, j have 

switched position. 
Generally, if m

ji
m

ji
m

ji
m

kk
IIII ,, ...

2211
×××=σ , the effect of the multiplication mIσ × M is to switch the position of 

rows ik and jk of M, then do the same thing with rows ik -1 and jk -1, then with rows ik -2 and jk -2… until finally rows i1, 
j1 have been switched. 

Let H be the matrix of dimensions nnn
×

+
2

)1(
 defined by: 

Hij=
⎩
⎨
⎧ −−+≤≤ −

otherwise
wiljl l

0
)1(1 1  

where 
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ln ,               k=0…n 

 i     ∈  {(wl-1+1)…wl},            l=1…n   
Remark 1 
Note that if Tn is the triangular matrix of dimensions n × n consisting of 0s above the main diagonal and 1s along 
and below the main diagonal,  

T=(tij)i,j=1..n        with    tij=
⎩
⎨
⎧ ≥

ji
ji

p0
1

 

then the following statement holds for all k = 0…(n-1), 
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where ∑−

=
−=

1

0
)(i

si snw  for i = 0…n, and H[i…j],[r…s] is the box of matrix H composed of the rows in the interval 
[i…j] and the columns in the interval [r…s]. 
Hence, for any given dimension n, the corresponding matrix Hn can be expressed as a function of the matrix T of 
different dimensions as: 
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         i=1..(n-1) 

Example 2 
The matrix H  of sizes n=2 and n=4, denoted H2 and H4, respectively, is shown below. Lines have been added to 
highlight the logical division into boxes 
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4H  

For any n = 2k, any row rearrangement of matrix Hn  can be achieved by multiplying Hn by a certain identity 

transform Iσ, where σ∈Permutations ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

2
1n  and =)(knsPermutatio { { } { }/...1...1: kkf → f one to 

one-onto, +∈ Nk }. This is due to a known algebraic result, stating that any permutation that is a member of 
Permutations(k) can be expressed as a composition of a certain number of permutations of that set whereby all 
the elements of {1…k} save two are held fixed. 
The matrix Hn should ultimately be rearranged as the matrix Sn, which is defined below. 
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Definition 3 For all n of the form 2l with l∈N+, let        
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where for any m∈N+, k=1…m, the matrices m
kM are square matrices of dimensions m defined as 

⎩
⎨
⎧ ≤

=
otherwise
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M ji

m
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1
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Hereinafter let nn SH
I

→
 denote the matrix Iσ that leads to the transformation of Hn into Sn.  

Hence,   nn SH
I

→
 x Hn = Sn . 

Let us look at a couple of simple examples from which the specific expression of the matrix nn SH
I

→
 can be 

easily deduced. 

Example 4    If   n=2,   then    
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Let us also look at the example of the transformation of H4 into S4, illustrating the operations that need to be 
performed and the expression corresponding to the matrix 44 SH

I
→

. 

Here 
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Hence,     5,35,444 IIII
SH

×==
→ σ  

Where    { } { },10..110..1: →σ   ,4)3( =σ ,5)4( =σ 3)5( =σ  
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Next we introduce a well known information retrieval problem and define a matricial model for the design of 
solutions and the study of operations complexity. In this model, the information retrieve and update operations are 
represented by 0,1-matrices. We will define pairs of matrices and the corresponding algorithms on them which 
implement these operations, and will apply on them algorithms which reduce the number of  non-zero entries, as 
in this model, the operations complexity is defined as the number of 1s present in both matrices. 
Let v1..vn be variables storing values from an arbitrary commutative semigroup S. We desire to execute the 
following operations on these variables: 

a) retrieve(i,j) returns vi +…+vj       ∀ 1≤ i j≤ ≤ n, 

b) update(i,x): vi := vi + x            ∀ 1≤ i≤ n,    x ∈  S 
This problem is known as the range query problem of size n. 
We can organize the variables as an array V  of length n, and implement the operations as above. In this case, 
the complexity of executing an update operation is constant meanwhile the  worst case complexity of a retrieve is 
linear on n. 
Our interest centers upon improving the average complexity of the operations assuming that each one of them is 
selected with the same probability. 
We can use different data structures involving a different number of variables storing values in the semigroup, 
and provide the corresponding algorithms to implement the update and retrieve operations, and still be solving 
the same computational problem. 
A matricial model for the study of the range query problem has been defined, relative to which computational 
complexity is assesed  (see [6]) 
The model comprises all programs verifying: 

a) A set  of variables Z={z1,z2..zm}is maintained. 
b) Retrieve(i,j) is performed by adding up a subset of these variables. 
c)Update(j,x) is performed by incrementing a subset of these variables by amounts which depend 
linearly on x .  

The model defined in [6] consists of triples <R,U,Z> where  
Z = {z1…zm} is a set of variables storing values on an arbitrary semigroup S, R=(ri,j) is a zero-one matrix of 

dimension mnn
×

+
2

)1(  and U=(ui,j) is a zero-one matrix of dimension nm× . Each row of R describes the 

subset of variables of Z which have to be added to execute one of the retrieve operations, and the i-th column of 
U describes the subset of such variables which have to incremented to execute an update(i,x). So, a pair of R 
and U matrices describes a solution for the range query problem of size n (m, the number of required program 
variables, may change although if has to be greater or equal n).  Associated with a triple <R,U,Z>, the programs 
implementing the operations are defined as follows. 
 

Definition 5 
Given a triplet <Z,R,U> within the matrix model for the range query problem of size n, with Z = {z1…zm}, then  the 
update and retrieve operations must be implemented through the following programs: 

• update(j,x): for l:=1 to m do [z1←zl + ul,j x] 
• Retrieve(i,j): output ∑=

m

l llk zr
1 , ,  where ∑ −

=
+−+−=

2

0
)1()(i

s
ijsnk  

The following proposition establishes a condition on R, U that entails reworking the programs defined above. 
 

Proposition 6 

Let H be the matrix of dimensions nnn
×

+
2

)1(
 defined as at the beginning of the introduction section.  
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Then the programs given in Definition 5 represent a solution for the range query problem of size n  if and only if 
HUR =× . 

In the following we define the complexity associated with the operations within the matrix model. 
Definition 7 
Given a triplet <Z,R,U> that solves the range query problem of size n within the matrix model, with Z = (z1…zm), 

njmijimjnniji uUrR ...1,...1,...1,
2

)1(...1, )(,)( ==
=

+
=

== , let the complexity associated with the Retrieve (i, j) operation 

be defined as: 

{ }|)1(0/| mlrr klkl ≤≤∧≠    where    ∑
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and the complexity associated with the Update (j, x) operation be defined as: 
{ }|)1(0/| mluu ljlj ≤≤∧≠     

Let m be the number of columns of R and of rows of U. The average complexity of Update operations is given by  

n

u
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j
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and the average complexity of the Retrieve operations by 
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It is known for any data structure solving the range query problem of size n that ρ + t = Ω(logn) 

Range query Problem-Solving Matrices 
In the following we will define pairs of matrices of 0s and 1s whose product is the matrix H —that is, matrices that 
represent solutions to the range query problem – in an attempt to minimize the total number of 1s present in both 
matrices and, therefore, the average complexity of the operations. A recursive definition will be given later (see  
Definition 13). In particular, let the matrices R = (ri, j), U = (ui, j) be defined, whose product for any dimension n of 
the form 2k with k∈N+ is Hn. 
Remember that the average complexity is calculated by dividing the total number of 1s by the number of different 

operations. Hence, if we are dealing with the problem of size n and let    =)(nψ ∑ ∑
+

= =

2/)1(

1 1

nn

i

m

j
ijr +∑∑

= =

m

i

n

j
iju

1 1

 

where m is the number of variables z1…zm used to implement the solution (m may vary, although it necessarily 

has to be greater than or equal to n), then the average complexity is given by    

2
)1(

)(
+

+
nnn

nψ    (n is the number 

of different Update(j, x) operations as a function of the first argument and 
2

)1( +nn  is the number of different 

possible arguments for a Retrieve(i, j) operation). 
We will prove that our matrices hold for 

4log2
2
9log

2
3

2
3)( 22

2 −−+−= nnnnnnψ  
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and this implies an average complexity that has a constant order of complexity. 
Remember that a superindex is used to specify the size of the problem corresponding to the matrix H. Hence Hn 

denotes the matrix for the range query problem of size n, although the size of Hn is nnn
×

+
2

)1(
. 

Remark 8 
How does this type of transformations affect the matrix approach to the range query problem? We know that it 
involves studying pairs of integer matrices Rn, Un such that Rn × Un = Hn. But if Rn × Un = Hn, then nn SH

I
→

 x Rn × 
Un = Sn. Hence the problem can be reformulated equivalently as entailing the study of matrix pairs whose product 
is the matrix Sn. In this case the algorithm that implements the Retrieve operations given in Definition 1 has to be 
modified, and the definition of the programs associated with a triplet <Z,R,U> is now as follows:  
Definition 9 
Given a triplet <Z,R,U>, with Z = (z1…zm), R, U matrices of dimensions n × m and m × n, respectively, let us 
define the following algorithms to implement the Update and Retrieve operations: 

1. Update(j,x):   for l: 1 to m do       xuzz jlll ,+←  

2. Retrieve(I,j): output   ∑ =

m

l llk zr
1 ,  where k is given by: 

a) 
2

1),1(
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njiijsnk i
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⎜
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b) ( ) njinijsnk i

s
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),1(2

0
  

 c) 
2
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2
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⎠
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⎛ −+−=   

 

The intuitive idea is that the row number (k) of the matrix Rn associated with a Retrieve(i,j) operation is different 
now, as some rows have switched position. 
The change of approach has no bearing on the complexity study of the operations, as, remember, the effect of 
multiplying any matrix by a certain Iσ does not alter the number of non-null matrix elements, but only switches the 
position of certain rows. 
Recursive Definition of Our Problem-Solving Matrices 
In this section we will give a recursive definition of our matrix pairs Rn, Un as a function of the problem size n. The 
matrices hold for Rn × Un = Hn. 
As mentioned already, the definition is valid for values of the form n = 2k. 
Let us refer to blocks of consecutive rows of the matrix Rn, which we consider to be divided into n horizontal 
blocks, the first formed by the first n rows, the second by the next (n-1) rows, the third by the (n-2) rows… up to 
the (n-1)th block, which is composed of two rows and the nth block which consists of just the last row.  
Let n

iR  denote the ith block of Rn and )( jRn
i , the jth row of this block such that the matrix Rn is given by 
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(note that if the dimensions of Rn are mnn
×

+
2

)1( , then the dimensions of each block n
iR  are (n-i+1) × m). 
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Rn, Un pairs are constructed by applying a function called Refinement. This function can be viewed as a two-stage 
process: the first stage involves executing a sequence of extension steps, and the second rearranging the rows of 
Rn  by multiplying by a given identity transform matrix Iσ. 
The following Definition 11 and Lemma 11 are needed to define the extension step concept. 
 

Definition 10 
Given a matrix M of 0s and 1s, two columns i, j are said to be disjoint if the set of rows {k/mk,i =1=mk,j} is empty. 
Similarly, two rows i, j of M are said to be disjoint if the set of columns {k/mi,k =1=mj,k} is empty. 
 

Lemma 11 

Let A, B be two matrices of 0s and 1s such that A × B = Sn, of dimensions mnn
×

+
2

)1(
 and m × n, 

respectively. Assume that there are two columns i, j of A that are not disjoint and let {l1…lq} be the set of rows of A 
for which  jlil kk

aa ,, 1 ==  ,   k=1…q holds. Then the rows i, j of B are disjoint. 

Definition 12 

Let A, B be two matrices of 0s and 1s such that A × B = Sn, of dimensions mnn
×

+
2

)1(
 and m × n, 

respectively. 
Assume that there is a set of columns C = {c1…cl}, l≥2, for which there is a non-empty maximal set – including all 
the rows that meet the following condition – of rows  F = {f1,…,fq} such that  1, =

ji cfa    ,Ccj ∈∀  Ffi ∈∀  

We define the extension step associated with the sets C, F as the execution of the following actions on A and B: 

1. Insert a new column z0 in A such that     Fia zi ∈⇔=1
0,  

2
)1(..1 +

=∀
nni  

2. Add a new row z0 in B such that     { }∑ ∈= Ckbb jkjz /,,0
   mj ..1=∀  

3. Columns c1…cl of A are modified as follows     0:, =
ki cfa   FfCc ik ∈∀∈∀ ,  

It can be easily demonstrated that if an extension step is applied to a matrix pair whose product is the matrix Sn, 
the product of the resulting matrices is the very same matrix Sn. 
We are now able to give a recursive definition of our matrix pairs. 
 

Definition 13 

Let us recursively define matrix pairs Rn, Un of dimensions mnn
×

+
2

)1(
 and m × n, respectively, with n of the 

form 2k with k∈N+, as follows 
1. n=2:     <R2,U2>=<H2,I2> 

2. n=2k:    <R2,U2>=Refinement( nR ˆ2̂ˆ , nU ˆ2̂ˆ )  where   
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  (m is the number of columns of Rn) 
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b) { } [ ]kmmm
k RRf →→1,0: , that is to say ),..( 1 m

m
k vvf  returns a matrix —a linear 

mapping— of dimensions k × m. m
kf  is defined such that the k rows are precisely the 

argument vector (v1…vm):     
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c) Refinement( nR2ˆ , nU 2ˆ ) is a two-phase process. 

i. Extension steps: as many consecutive extension steps are executed on the matrix nR ˆ2̂ˆ  as necessary to assure 
that each row of the blocks ( ) niinRf n

i
m

n ...1,)1( =+− , and the blocks nR1  have just one 1. The extension 
steps should be bound to sets of columns C that include either columns of the left-hand blocks only—blocks of 
the form ( ))1( +− inRf n

i
m

n — or columns of the right-hand blocks —of the form nR1 . 

Let nR 2'ˆ , nU 2'ˆ denote the matrices resulting from executing these extension steps. 

The matrix nU 2'ˆ is actually the final matrix nU 2  that we aim to define, as it is unaffected by the second phase 
of the Refinement process. 

Note: We have proved that the number of extension steps needed to construct nR 2 , nU 2  is exactly 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+ 1...1

2
1
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2 32
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. 

ii. Rearrangement:  the product of the matrices nR2ˆ , nU 2ˆ  is a matrix S2n from which it likewise follows that the 
product of the matrices nR 2'ˆ , nU 2'ˆ  is S2n, as it has already been demonstrated that the extension steps do not 
affect the product of the matrices. Assuming this result, this phase involves rearranging the matrix nR 2'ˆ  by 
means of the multiplication n

HS
RI nn

2'ˆ
22 ×

→
, where nn HS

I 22 →
is the matrix that holds for 

nn
HS HSI nn

22
22 =×

→
. Finally, the matrix nR1  that we are trying to define is precisely 

n
HS

n RIR nn
22 'ˆ

22 ×=
→

. 

Note: the existence of the matrix nn HS
I 22 →

 is straightforwardly deduced from the existence of the matrix 

nn SH
I 22 →

, since if the expression corresponding to nn SH
I 22 →

 is c
jkik

c
ji

c
ji III ,2,21,1 ...××× , where c is the 

number of rows of H2n, then nn HS
I 22 →

= c
ji

c
ji

c
jkik III 1,12,2, ... ××× . 

Remarks 14 

a) From the definitions of the matrices Tn, S2n, H2n nR2ˆ , nU 2ˆ  it follows that    nR2ˆ  x nU 2ˆ =S2n 

b) As a consequence, and by definition of Rn, Un, it holds that Rn × Un = Hn. 
c)The maximum number of 1s present in each row of Rn is 2, whatever the value of n. 
d)Let n = 2k+1 for a certain natural number k. The number of extension steps that are executed in the Refinement 

phase of the matrices construction process is ⎟⎟
⎠

⎞
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e)Let A, B be two matrices of 0s and 1s, such that A × B = Sn, of dimensions mnn
×

+
2

)1(
 and m × n, 

respectively. 
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The execution of an extension step associated with the column and row sets C= {c1…cl}, F={f1…fq} of A, 
respectively, leads to a change in the total number of 1s present in the two matrices according to the following 
expression: 

{ }
∑
∈∈

×−+
njCi

ji qlqb
..1,

, )( . If the value of ∑ ∈∈
×−+

}...1{, , )(
njCi ji qlqb  is greater than 0 then the total number 

of 1s in the matrices increases; if the value is equal to 0 then the number of 1s is unchanged, and if the value is 
less than 0 the total number of 1s decreases. 
As a consequence, each extension step executed in the Refinement phase of the process of constructing our 
matrices given in Definition 13 decreases the total sum of the number of 1s present in the two matrices. 
Theorem 15 

Let Rn, Un be matrices of dimensions mnn
×

+
2

)1(
 and m × n, respectively, with n of the form 2k with k∈N+, as 

defined in Definition 13.  
Let #Rn, #Un denote the number of 1s in the matrices Rn  and Un respectively. 
It holds that 

#Rn + #Un 4log2
2
9log

2
3

2
3

22
2 −−+−= nnnnn  

This represents a constant average complexity for the set of nnn
+

+
2

)1(
 Retrieve and Update operations. 

As regards the number of variables z1…zm required by the solution defined by our matrices as a function of the 
problem size n. Let Var(n) denote this number of variables, which, as we know, is the same as the number of 
columns and rows of Rn  and Un respectively. It holds that 

2log22log 22 ++−= nnnnm  
Proof 
For the proof of these results, see  [5]. 
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