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HYPER-RANDOM PHENOMENA: DEFINITION AND DESCRIPTION 

Igor Gorban 

Abstract: The paper is dedicated to the theory which describes physical phenomena in non-constant statistical 
conditions. The theory is a new direction in probability theory and mathematical statistics that gives new 
possibilities for presentation of physical world by hyper-random models. These models take into consideration the 
changing of object’s properties, as well as uncertainty of statistical conditions.  

Keywords: uncertainty, random, hyper-random, phenomenon, probability, statistics. 

Introduction 
The most of physical phenomena (electrical, electromagnetic, mechanical, acoustics, nuclear, and others) are an 
indeterminate type. Usually, different stochastic methods are used to describe them. However, possibilities of 
such methods are limited. There are serious problems, when the observation conditions are changed in space or 
time and it is impossible to determine the statistical regularity, even by a large experimental sample size.  
The changed conditions are met everywhere. It is impossible to image any real event, value, process or field in 
absolutely fixed conditions. All mass measures are led in the variable conditions, controlled only partly. 
The fixed statistical condition and the probability measure are linked together. When it is said the fixed (constant) 
condition about it is meant that there is the probability measure for every samples of the researched set.  
When a physical phenomenon is observed in more or less invariable condition, there is possibility to achieve the 
statistical regular results. However, if the condition is changed in wide bounds, the statistical estimates are not 
stable and it is impossible to obtain probable estimates. 
To image a depth of the problem, let us apply to well known classic task with tossing a coin. The stability of head 
or tail ( A  or B ) essentially depends from the style of tossing [1]. In a fixed statistical condition there are stable 
event frequencies ( )Np A , ( )Np B , which tend to any probabilities ( )P A , ( )P B , when the number of 
experiments N  is tend to infinity. In case of variable condition, the frequencies ( )Np A  and ( )Np B  are 
continuously changed. They oscillate in any intervals and not tend to any fixed probabilities.  
The condition stability plays the important role in the probability theory that marked by a number of scientists, 
beginning from Jakob Bernoulli [2]. R. von Mises proposed even to define [3] the probability conception on the 
base of the event frequency in fixed condition.  
It is not simple to determine correctly a probability measure for real physical phenomenon. This fact was marked 
in many works, for instance, in the article [4]. 
Difficulties and often impossibility to use the probability theory stimulate the developing of new theories, such as 
fuzzy logic [5], neural network [6], chaotic dynamical systems [7], and others. The new theory of hyper-random 
phenomena, the bases of which are presented below, may be included to this list. 
The aim of the paper is to review the original author’s researches published in articles [8 – 15] and generalized in 
the monograph [16].  
The theory is oriented to description of different type uncertainty, as a contingency, when the probability measure 
exists, as another one, when the probability measure does not exist. 
In modern mathematics, the random phenomena are defined by the probability field that assigned by the triad 
( , ,PΩ ℑ ), where Ω  represents the set of the simple events ω∈Ω , ℑ  – the Borel field, P  – the probability 
measure of the subsets. 
The hyper-random phenomena may be defined by the tetrad ( , , , )gG PΩ ℑ  [9], where Ω  and ℑ  are the set of 
simple events and the Borel field (as in the case of the probability field), G  is the set of the conditions g G∈ , 
and gP  – the probability distributions for the condition g .  
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Any hyper-random phenomena (events, variables, functions) may be regarded as a set (family) of random 
subsets. In this construction, every subset is associated with any fixed observation condition. The probability 
measures are determined for the elements of each subset; however, the measures are not determined for the 
subsets of the set. 

Hyper-random Events and Variables 
The hyper-random event A  from the Borel field ℑ  cannot be described by any probability. However, the event 
/A g  under the condition g G∈  may be presented by the probability ( ) ( / )gP A P A g= . This probability 

oscillates when condition is changed. The range of the oscillation may be described by the supremum )(APS  
and the infimum )(API  of the event probability defined as 

( ) sup ( / ), ( ) inf ( / ).S I g Gg G
P A P A g P A P A g

∈∈
= =  

In the constant condition ( constg = ) these bounds are congruent and the hyper-random event degenerates to 
the random one with the probability ( ) ( ) ( )S IP A P A P A= = . 

The bounds )(APS , )(API  are half-measures. There has been obtained the expressions that are similar to the 
formulas, describing the product and the addition rules, the Bayes' and other theorems of the probability theory. 
To describe the scalar hyper-random variable X  a number of the characteristics have been proposed. They are 
similar to the probability characteristics of a random variable. The main of them are the supremum ( )SF x  and 
the infimum ( )IF x  bounds of the distribution function and also the probability density functions ( )Sf x  and 
( )If x  of these bounds. They are determined by the following expressions: 

{ } { }( ) sup / , ( ) inf / ,S I g Gg G
F x P X x g F x P X x g

∈∈
= ≤ = ≤  

( ) ( )( ) , ( ) ,S I
S I

dF x dF xf x f x
dx dx

= =  

where { }/P X x g≤  is the probability of the inequality X x≤  for the condition g . 

It has been found that the bounds of the distribution function and the probability density functions of the bounds 
for hyper-random variable have the same particularities as according characteristics for a random variable and in 
addition )()( xFxF IS ≥ . 
Among the bounds of the distribution function there is a zone of 
the ambiguity (fig. 1). For a random variable X  its width 

)()()( xFxFxF IS −=Δ  equals to zero for all x . If the 
supremum ( )SF x  of the distribution function is tend for all x  to 
unit and the infimum ( )IF x  – to zero, zone of the ambiguity is 
tend to maximum. In this case, the hyper-random variable 
approaches to a chaos one.  
To describe the hyper-random variable, the characteristics similar 
to random variable ones, may be used. They are the bound’s 
crude and the central moments determined for the hyper-random 
variable X  on the base of the bound’s expectation 

[ ]M φ( )S X , [ ]M φ( )I X  of the function φ( )X :  

[ ] [ ]M ( ) ( ) ( )d , M ( ) ( ) ( )d .S S I IX x f x x X x f x x
∞ ∞

−∞ −∞

ϕ = ϕ ϕ = ϕ∫ ∫  

 
Fig. 1. The bounds of the distribution function  

and the zone of the ambiguity (the black-out part) 
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In particular, the bound’s means xSm , xIm  are [ ] [ ]M , M .Sx S Ix Im X m X= =  For the real hyper-random 

variable X  the bound’s variance xSD , xID  are 2 2( ) , ( ) .Sx S Sx Ix I IxD X m D X m⎡ ⎤ ⎡ ⎤= Μ − =Μ −⎣ ⎦ ⎣ ⎦  

The bound’s crude moments are determined by the expressions ν
ν=MSx Sm X⎡ ⎤⎣ ⎦ , ν

ν=MIx Im X⎡ ⎤⎣ ⎦  and the 

bound’s central moments – by the ones ν ν
ν νμ =M ( ) , μ =M ( ) ,Sx S Sx Ix I IxX m X m⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦  where ν  is the 

order of the moment. 
To describe the hyper-random variables other type characteristics may be used too. They are supremum and 
infimum of the crude moments and the same bounds of the central moments. These characteristics are 
determined on the base of the expectation of the function φ( / )X g : 

M [φ( / )] sup φ( / ) ( / )d , M [φ( / )] inf φ( / ) ( / )d ,s i g Gg G
X g x g f x g x X g x g f x g x

∞ ∞

∈∈ −∞ −∞

= =∫ ∫  

where ( / )f x g  is the probability density function in condition g . 
In particular, for the hyper-random variable X  the supremum sxm  and the infimum ixm  of the mean are 
=M [ ], =M [ ],sx s ix im X m X  and the supremum sxD  and the infimum ixD  of the variance are 

2 2
/ /=M [( ) ], =M [( ) ],sx s x g ix i x gD X m D X m− −  where /x gm  represents the mean of the random variable 

/X g . The crude moment’s bounds νsxm  and νixm  are described by the expressions ν
ν=Msx sm X⎡ ⎤⎣ ⎦ , 

ν
ν=Mix im X⎡ ⎤⎣ ⎦ , and the central moment’s bounds νμ sx  and νμix  – by the following ones 

ν
ν /μ =M [( ) ]sx s x gX m− , ν

ν /μ =M [( ) ].ix i x gX m−  

In general, the operators [ ]MS ⋅ , [ ]M I ⋅  differ from the operators [ ]M s ⋅ , [ ]Mi ⋅  and the bound’s moments 
differ from the moment’s bounds, although in some particular cases they may be expressed by each other, for 
instance, when the distribution functions ( / )F x g  for different conditions g  have not interception points. Then, 
if the variance /x gD  is raised with raising the mean /x gm  (“a” type distribution) there are the following equalities: 

Sx ixm m= , Ix sxm m= , Sx ixD D= , Ix sxD D= ; if the variance /x gD  is reduced with raising the mean /x gm  
(“b” type distribution) there are the equalities: Sx ixm m= , Ix sxm m= , Sx sxD D= , Ix ixD D= . 

The results were generalized to complex X  and vector X  hyper-random variables, to real ( )X t , complex 
( )X t , and vector ( )X t  functions.  

Hyper-random Functions  
The scalar hyper-random process ( )X t  has been presented as a family of the random processes ( ) /X t g  
determined for a set conditions g G∈ . The process described by the supremum ( ; )SF x t  and the infimum 
( ; )IF x t  of the distribution function, probability density functions ( ; )Sf x t , ( ; )If x t  of these bounds, the 

bound’s moments ν ( )Sxm t , ν ( )Ixm t , νμ ( )Sx t , νμ ( )Ix t  and the moment’s bounds ν ( )sxm t , ν ( )ixm t , 

νμ ( )sx t , νμ ( )ix t , where 1ν=(ν , , ν )L…  is the order vector of the moment, L  is the measure of the 
distribution. These characteristics are described by expressions that are similar to ones for hyper-random 
variable: 

1 1 1 1( ; ) sup { ( ) ,..., ( ) / }, ( ; ) inf { ( ) ,..., ( ) / },S L L I L Lg Gg G
F x t P X t x X t x g F x t P X t x X t x g

∈∈
= ≤ ≤ = ≤ ≤  
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1 1

( ; ) ( ; )( ; ) , ( ; ) ,
... ...

L L
S I

S I
L L

F x t F x tf x t f x t
x x x x

∂ ∂
= =

∂ ∂ ∂ ∂
 

( ) M [ ( )] ( ; ) , ( ) M [ ( )] ( ; ) ,Sx S S Ix I Im t X t xf x t dx m t X t xf x t dx
∞ ∞

−∞ −∞

= = = =∫ ∫  

1 1

1

1 1

1

ν ν ν ν
ν ν 1 1 1 1 1 1

ν ν ν ν
ν ν 1 1 1 1 1 1

( , , ) M [ ( ) ( )] ( , , ; , , ) ,

( , , ) M [ ( ) ( )] ( , , ; , , ) ,

L L

L

L L

L

Sx L S L L S L L L

Ix L I L L I L L L

m t t X t X t x x f x x t t dx dx

m t t X t X t x x f x x t t dx dx

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

= =

= =

∫ ∫

∫ ∫

…

…

… … … … … … …

… … … … … … …
 

1

1

1

1

ν ν
ν ...ν 1 1 1

ν ν
ν ...ν 1 1 1

μ ( ,..., ) M [( ( ) ( )) ...( ( ) ( )) ],

μ ( ,..., ) M [( ( ) ( )) ...( ( ) ( )) ],

L

L

L

L

Sx L S Sx L Sx L

Ix L I Ix L Ix L

t t X t m t X t m t

t t X t m t X t m t

= − −

= − −
 

( ) M [ ( )]sx sm t X t= , ( ) M [ ( )]ix im t X t= , 
1 1

1 1

ν ν ν ν
ν ... ν 1 1 ν ... ν 1 1( ,..., ) M [ ( )... ( )], ( ,..., ) M [ ( )... ( )],L L

L Ls x L s L ix L i Lm t t X t X t m t t X t X t= =  
1

1

1

1

ν ν
ν ... ν 1 1 / 1 /

ν ν
ν ... ν 1 1 / 1 /

μ ( ,..., ) M [( ( ) ( )) ...( ( ) ( )) ],

μ ( ,..., ) M [( ( ) ( )) ...( ( ) ( )) ].

L

L

L

L

s x L s x g L x g L

ix L i x g L x g L

t t X t m t X t m t

t t X t m t X t m t

= − −

= − −
 

The bound’s correlation functions and the bound’s covariance functions are  
1 2 1 2 1 2 1 2( , ) M [ ( ) ( )], ( , ) M [ ( ) ( )],Sx S Ix IK t t X t X t K t t X t X t= =  

1 2 1 1 2 2

1 2 1 1 2 2

( , ) M [( ( ) ( ))( ( ) ( ))],
( , ) M [( ( ) ( ))( ( ) ( ))]

Sx S Sx Sx

Ix I Ix Ix

R t t X t m t X t m t
R t t X t m t X t m t

= − −
= − −

 

and the correlation function’s bounds and covariance function’s bounds are  
1 2 1 2 1 2 1 2( , ) M [ ( ) ( )], ( , ) M [ ( ) ( )],s x s ix iK t t X t X t K t t X t X t= =  

1 2 1 / 1 2 / 2

1 2 1 / 1 2 / 2

( , ) M [( ( ) ( ))( ( ) ( ))],

( , ) M [( ( ) ( ))( ( ) ( ))].
s x s x g x g

i x i x g x g

R t t X t m t X t m t

R t t X t m t X t m t

= − −

= − −
 

Stationary and Ergodic Hyper-random Functions 
It has been found that some hyper-random functions have special stationary and ergodic properties. A function 
( )X t  has been called a stationary hyper-random one if the bound’s mean do not depend from time and bound’s 

correlation functions depend only from time interval 12τ tt −= : 1 2( , ) (τ)Sx SxK t t K= , 1 2( , ) (τ)Ix IxK t t K= . 
A function ( )X t  has been called stationary hyper-random one for all conditions if the mean 

/ ( ) ( ; / )dx gm t xf x t g x
∞

−∞

= ∫  does not depend from time t  ( / /( )x g x gm t m= ) and the correlation function 

/ 1 2 1 2 1 2 1 2 1 2( , ) ( , ; , / )d dx gK t t x x f x x t t g x x
∞ ∞

−∞ −∞

= ∫ ∫  

depends only from the interval τ  and the condition g : / 1 2 /( , ) ( )x g x gK t t K= τ . 
The bound’s correlation functions (τ)SxK , (τ)IxK  are determined by bound’s spectral density ( )SxxS f , 
( )IxxS f  that linked each other by the following expressions: 

( ) (τ)exp( j2π τ)dτSxx SxS f K f
∞

−∞

= −∫ , ( ) (τ) exp( j2π τ)dτ,Ixx IxS f K f
∞

−∞

= −∫  
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(τ) ( )exp( j2π τ)d ,Sx SxxK S f f f
∞

−∞

= ∫  (τ) ( ) exp( j2π τ)d ,Ix IxxK S f f f
∞

−∞

= ∫  

where f  is a frequency. 
The spectral density’s bounds are determined by expressions /( ) sup ( )sxx xx g

g G
S f S f

∈
= , 

/( ) inf ( )ixx xx gg G
S f S f

∈
= , where / ( )xx gS f  is the spectral density for condition g : 

/ /( ) (τ) exp( j2π τ)dτxx g x gS f K f
∞

−∞

= −∫ , / /(τ) ( ) exp( j2π τ)dx g xx gK S f f f
∞

−∞

= ∫ . 

For two hyper-random functions ( )X t , ( )Y t  stationary linked each other the bound’s correlation functions are 
determined by the following expressions:  

(τ) ( ) exp( j2π τ)dSxy SxyK S f f f
∞

−∞

= ∫ , (τ) ( ) exp( j2π τ)d ,Ixy IxyK S f f f
∞

−∞

= ∫  

where ( )SxyS f , ( )IxyS f  are the bound’s spectral density: ( ) (τ) exp( j2π τ)dτSxy SxyS f K f
∞

−∞

= −∫ , 

( ) (τ)exp( j2π τ)dτIxy IxyS f K f
∞

−∞

= −∫ . 

The spectral density’s bounds are /( ) sup ( )sxy xy g
g G

S f S f
∈

= , /( ) inf ( )ixy xy gg G
S f S f

∈
= , where / ( )xy gS f  is the 

spectral density for condition g : / /( ) (τ)exp( j2π τ)dτxy g xy gS f K f
∞

−∞

= −∫ , 

/ /(τ) ( ) exp( j2π τ)dxy g xy gK S f f f
∞

−∞

= ∫ . 

It has been determined the particularities of these characteristics and introduced a number of new conceptions, in 
particular hyper-random white noise. 
Some hyper-random function ( )X t  may be presented as a set of the random functions determined on the 
disjoint intervals [ , ( 1))gT Tg T g= +  with longitude T  on that the conditions are not changed 
( 0, 1, 2,g = ± ± … ). Let ( )gX t  is the part of the function ( )X t  according to interval gT  and reduced to 
interval [ / 2, / 2)T T− : 

( ), if ,
( ( 0,5))

0, if .
g

g
g

X t t T
X t T g

t T

∈⎧⎪− + = ⎨ ∉⎪⎩
 

The function ( )gX t  in a fixed condition 0, 1, 2,g = ± ± …  is the random function determined on the interval 
[ / 2, / 2)t T T∈ − . The set of these functions in uncertainty conditions is a hyper-random function 
( ) { ( ), 0, 1, }gY t X t g= = ± … . A hyper-random function is any function 1φ( ( ),..., ( ))LY t Y t  too, where 

1, , [ / 2, / 2)Lt t T T∈ −… . 
A hyper-random function ( )X t , that is stationary for all conditions and φ φlim ( )

T
m T m

→∞
= , has been called an 

ergodic one. Here φ ( )m T  is the sample mean: 
/ 2

φ 1 1
/ 2

1( )=M [φ( ( ),..., ( ))] φ( ( ),..., ( ))d
T

T L L
T

m T Y t Y t Y t t Y t t t
T −

= + +∫  
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and φ 1M[φ( ( ),..., ( ))]Lm Y t Y t=  is the mean of the function 1φ( ( ),..., ( ))LY t Y t .  
A hyper-random ergodic function ( )X t  may be presented by the following serious: 
( ) lim ( ( 0,5))gT g

X t X t T g
→∞

= − +∑ . 

When T →∞  the mean’s bounds and the correlation and the covariance function’s bounds are described by 
the following expressions: 

1sup ( ) d
T

g

sx g
g G T

m x t t
T∈

= ∫ , 1inf ( ) d ,
T

g

ix gg G
T

m x t t
T∈

= ∫  

1(τ) sup ( τ) ( )d
T

g

sx g g
g G T

K x t x t t
T∈

= +∫ , 1(τ) inf ( τ) ( )d
T

g

ix g gg G
T

K x t x t t
T∈

= +∫ , 

/ /
1(τ) sup [ ( τ) ][ ( ) ]d ,

T T T

g

sx g x g g x g
g T

R x t m x t m t
T

= + − −∫  

/ /
1(τ) inf [ ( τ) ][ ( ) ]d ,

T T T

g

ix g x g g x gg
T

R x t m x t m t
T

= + − −∫  

where /
1 ( ) d

T

g

x g g
T

m x t t
T

= ∫ . 

Hyper-random Models 
Developed approaches give possibilities to model different types of real physical objects and their estimates 
under uncertainty changing of object’s properties and statistical observation conditions. It has been proposed 
different measure models: determine – hyper-random, random – hyper-random, and hyper-random – hyper-
random ones, in that the objects are presented by determine, random, and hyper-random models and their 
estimates – by hyper-random models.  
In case of determine – hyper-random measure model, in the fixed condition g  the accuracy of vector estimation 

*Θ  of parameter θ  may be described by the expectation of error’s square 
2

2 *Δ =Μ[Θ θ /θ, ]g g− , where M  

is expectation operator. For the indefinite condition the accuracy is characterized by the interval where the value 
2Δ g  may be situated. The bounds of this interval are 2 2 2

minΔ min[Δ ,Δ ]S I= , 2 2 2
maxΔ max[Δ ,Δ ]S I=  where 

2
2 *M [Θ θ /θ]S SΔ = − , 

2
2 *M [Θ θ /θ]I IΔ = −  are the bound’s quadratic estimate. 

The accuracy of point estimation may be characterized by bounds of quadratic estimate: 
2 2

2 * 2 *Δ supΜ[Θ θ / θ, ], Δ inf Μ[Θ θ / θ, ].s i g Gg G
g g

∈∈
= − = −  

In scalar case the volumes 2
SΔ , 2

IΔ  and 2Δ s , 2
iΔ  may be presented as 2 2 2

0Δ σ εS S S= + , 2 2 2
0Δ σ εI I I= +  and 

2 2 2
0/Δ sup[σ ε ]s g g

g G∈
= + , 2 2 2

0/Δ inf[σ ε ]i g gg G∈
= +  where ( ) 22 *σ Μ Θ /θS S Sm⎢ ⎥= −⎢ ⎥⎣ ⎦

, 

( ) 22 *σ Μ Θ /θI I Im⎢ ⎥= −⎢ ⎥⎣ ⎦
 are the variances of error bounds, ( )*

2
2 *

θ /
σ Μ Θ / θ,g g

m g⎢ ⎥= −⎢ ⎥⎣ ⎦
 is the error 

variances for condition g , 0ε ( θ)S Sm= − , 0ε ( θ)I Im= −  are the systematic errors for estimation 
distribution bounds, and *0 / θ /

ε ( θ)g g
m= −  is the systematic error for condition g  (fig. 2). 
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Fig 2. The fan of distribution functions *(θ /θ, )F g  (thin curves) for different conditions g   

and supremum *(θ /θ)SF  and the infimum *(θ /θ)IF  bounds of the distribution function (bold curves) 
 

To characterize the error *Δ=Θ θ−  of scalar parameter θ  and it’s estimate *Θ  the intervals 

0 0[ε σ , ε σ ]S S I Ik k− +  and [ σ , σ ]S S I Im k m k− +  may be used correspondently, where σ S , σ I  are the bound’s 
error standard deviation, and k  is the constant (fig. 2). If conditional distributions of random values *Θ /θ, g  
are not penetrates and the variance /x gD  is raised or reduced with rising the mean /x gm , the last interval is 

determined by error mean’s bounds sm , im  and error standard deviation’s bounds σ s , σ i . For “a” type 
distribution it may be presented as [ σ , σ ]i i s sm k m k− +  and for “b” type distribution – as 
[ σ , σ ]i s s im k m k− + . 

A hyper-random estimate *Θ  of fixed parameter θ  was called consistent one if it converged in probability to this 
parameter under all conditions g G∈ : lim {Θ θ ε / θ, } 0

N
P g g G∗

→∞
− > = ∀ ∈ , where N  is a sample 

size for every condition g  and ε 0> . 
The necessary condition, that the hyper-random estimate is a consistent type, is that it degenerates to random 
estimate when N →∞ . So, estimates are not consistent if they stay hyper-random type when N →∞ . 
It was made a hypothesis (hyper-random hypothesis) that all real physical phenomena are existed in continuously 
changed statistic conditions and therefore all physical phenomena, usually considered as a random type, really 
are the hyper-random type. This particularity exists not only in case of finite but infinite interval observation. It is 
followed from this that all real estimates are not consistent and it is impossible to achieve infinitely large accuracy 
in any conditions. 
The bounds of error’s square expectation 2Δ s , 2Δ i  formed on the base of sample X  size N  and bounds 

*D Θ /θs ⎢ ⎥⎣ ⎦ , *D Θ /θi ⎢ ⎥⎣ ⎦  of estimate’s variance *D Θ /θ,g⎢ ⎥⎣ ⎦  are described by the inequalities  
2 2

0/ 0/2 * 1 2 * 1
/ /

ε ε
Δ D Θ /θ sup 1+ , Δ D Θ /θ inf 1+ ,

θ θ
g g

s s i iN g N gg Gg G
J J− −

∈∈

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∂ ∂
≥ ≥ ≥ ≥

∂ ∂
 

where /N gJ  – Fisher intrinsic accuracy for random value *Θ /θ,g : 
2

2

/ 2

ln ( / θ, ) ln ( /θ, )M M ,
θ θ

N N
N g

f X g f X gJ
⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ∂⎢ ⎥= = −⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 

/ gε 0

 

*θ /g
m

σSk  
θ  

σIk

*θ θ−  

*θ  

Iε 0  

Sε 0
 

*(θ /θ)IF  

Im
 

 
Sm  

*θ  

*(θ /θ, )F g  

*(θ /θ)SF  
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( / θ, )Nf x g  – probability density function of sample / θ,X g . 

The bound’s quadratic estimate 2Δ S , 2Δ I  and the bound’s variance *D Θ /θS ⎢ ⎥⎣ ⎦ , *D Θ /θI ⎢ ⎥⎣ ⎦  are defined by 
inequalities  

2 2
0 0

2 * 2 *
2 2

ε ε1+ 1+
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∂ ∂

≥ ≥ ≥ ≥
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∂∂

 

were ( /θ)SNf x , ( /θ)INf x  are bound’s probability density function of sample / θX . 
Analogues results were obtained for hyper-random – hyper-random measure model too. 
On the base of hyper-random hypothesis was shown that in any case accuracy of any real physical 
measurements is limited, all real estimates are not consistent ones, and therefore all real physical phenomena 
are hyper-random type.  

Processing of Hyper-random Signals 
Developed body of mathematics may be effectively used for signal processing. The example illustrating such 
possibilities presents below.  
Let us look the measure process of the level noise in the production area when there is a lot of production 
equipment which time to time switch on and switch off and therefore the noise condition is changed in widely 
boundaries. The measurement is done on the basis of the data obtained for a long time. 
This task may be concretized by different manner. If the noise in fixed condition and the rule of changing 
condition may be regarded as random processes, the task becomes a classic one that consists of estimation of a 
random variable or some random variables. To solve this task it is requested to know the distribution functions 
type or at least have information that such distributions exist. 
If it is impossible to propose, the changing conditions may be described by any distribution, the task is a hyper-
random type. In this case, the recorded data is a sample from a general population of the hyper-random function 
( )X t . 

By the processing of this data it is possible to obtain estimates of different characteristics. The image of the 
recorded data and estimates of some characteristics give the fig. 3 – 4. It has been proposed that the process is 
an ergodic type.  
 

 
Fig. 3. Current noise level in the production area (solid line), 
estimates of the bounds of the expected values *

sxm , *
ixm  

(straight solid bold lines), and the bounds of the standard 
deviations * *σsx sxm ± , * *σix ixm ±  (dashed lines). 

 
Fig. 4. The estimates of the distribution functions * ( / )F x g  
(solid lines), the estimates of the bounds of the distribution 

function * ( )SF x , * ( )IF x  (solid bold lines), and the estimate 
of the distribution function * ( )F x  calculated in the 

hypothesis that the data are random type (bold dashed line). 
 
It is followed from the figures that presented parameters and functions give a lot of useful information that is 
essentially more informative than characteristics usually used for describing of random processes.  
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Conclusion 
1. Any hyper-random phenomena (events, variables, functions) may be regarded as a set (family) of random 
subsets. In this construction, every subset is associated with any fixed observation condition. The probability 
measures are determined for the elements of each subset; however, the measures are not determined for the 
subsets of the set. 
2. Hyper-random variables and functions may be described by the supremum and the infimum bounds of the 
distribution function. Among the bounds of the distribution function there is a zone of the ambiguity. Random and 
chaotic phenomena are the degenerate hyper-random phenomena. 
3. In addition to the bounds of the distribution function, the main characteristics describe hyper-random variables 
and functions are bound’s crude and the central moments and also crude and the central moment’s bounds. They 
are, in particular, bound’s mean, bound’s variance and also mean’s bounds variance’s bounds and so on.  
4. Estimations of hyper-random variables and functions were researched. It was paid attention to all real 
statistical conditions were continuously changed. Therefore all real physical phenomena usually regard as 
random tapes, in really, are hyper-random tapes. This particularity occurs not only in case of finite but also in 
case of infinite interval observations. It is follows from this that all estimations of real variables and functions are 
not consistent and so it is impossible to achieve infinite physical measurement accuracy in any real conditions. 
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