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MATRICIAL MODEL FOR THE STUDY OF LOWER BOUNDS 

Jose Joaquin Erviti,  Adriana Toni 

Abstract: Let V be an array. The range query problem concerns the design of data structures for implementing 
the following operations. The operation update(j,x) has the effect  xvv jj +← ,  and the query operation 

retrieve(i,j) returns the partial sum  ji vv ++K . These tasks are to  be performed on-line. We define an 

algebraic model – based on the use of matrices – for the study of the problem. In this paper we establish as well 
a lower bound for the sum of the average complexity of both kinds of operations, and demonstrate that this lower 
bound is near optimal – in terms of asymptotic complexity. 

Keywords: zero-one matrices, lower bounds, matrix equations  

ACM Classification Keywords: F.2.1 Numerical Algorithms and Problems 

1 Introduction 

Let V=(v1 .. vn)  be an array of length n storing values from an arbitrary commutative semigroup S. We define the 
operations: 

• retrieve(j,k): returns vj+..+vk        j≤∀1 nk ≤≤   

• update(j,x)  : vj := vj +x                    j≤∀1 n≤ ,    Sx∈                       (1) 

We refer to n as the size of the range query problem. We see that the complexity of executing an update(j,x) 
operation is constant  meanwhile the worst complexity of a retrieve(i,j) operation is linear on n. 
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If we define the operations in a different way: 
• retrieve(j,k) :  returns vk-vj-1                                  j≤∀1 nk ≤≤   (consider v0=0) 

• update(j,x)   : [forall jk ≥ do     vk:=vk+x]    j≤∀1 n≤ ,    Sx∈                     (2) 

then the complexity of a retrieve(i,j) operation  is constant meanwhile the worst case complexity of an update(j,x) 
operation is linear on n. 
In both cases we are solving the same computational problem, that is to say: any sequence of update and 
retrieve operations over V produces the same results, no matter if the operations are implemented as in (1) or (2). 
With results we mean the outputs produced by the retrieve operations. 
We can use different data structures involving a different  number of variables storing values in the semigroup – 
others than the n variables organized as an array V  - and provide the corresponding algorithms to implement the 
operations update and retrieve, and still be solving the same computational problem. 
We work inside the semigroup model of computation: the array V can store values from an arbitrary commutative 
semigroup, and the implementations of the update and retrieve operations must perform correctly irrespective of 
the particular choice of the semigroup. In particular, the implementations are not permitted to utilize the 
substraction   operation. 
What kind of different data structures and programs are to be considered? We introduce right now the formal  
statement of the problem provided in [7]. 
We consider the class of data structures that involve program variables z1, z2 ..  which store values in S. Stored in 
a variable zi is the value ∑ ∈ iYj jv  where Yi is a specified subset of {1,2..n}. The query retrieve(j,k) is to be 

implemented with the program   return ∑∈ jkRi iz  where Rjk is a specified set of integers. The update(j,x) 

operation is to be implemented with the program  zl← zl+x jUl∈∀ , where {iU j = / iYj∈ }. 
 

It is shown that a data structure in this class is correct if and only if  

| jkl RU ∩ |=
⎩
⎨
⎧ ≤≤

otherwise
klj

0
1

 

In other words, we consider all the solutions consisting in a set of variables z1, z2 … which store values in S, and 
such that a retrieve operation consists in adding up a subset of these variables, and an update(j,x) operation 
consists in incrementing by x a subset of these variables. 
The complexity of the operation is defined as : complexity of update(j,x)=|Uj|, and complexity of retrieve(j,k) =|Rjk|. 
From now on we will denote: 

p = 
n

U
n

j
j∑

=1      and        t = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑
≤≤≤

2

||
1

n

R
nkj

jk

 

 

that is to say, p represents the average complexity of the update operations – n is the number of such operations 
– and t represents the average complexity of the retrieve operations – in this case the number of operations is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

. 
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The following results are discussed in this paper: 
• In section 2 we define an algebraic model – based in the use of matrices – for the study of the problem. 
• In section 3 we obtain a lower bound for p+t. We use a previously known result about the optimal lower 

bound for the average complexity of operations update and retrieve concerning the partial sums 
problem, which is a particular case of the range query problem in which the first argument of operation is 
fixed and equal 1. 

• In section 4 we provide the corresponding amount p+t for some previously defined data structures 
solving our problem. This  had not been calculated before, and it serves to verify that our lower bound is 
near optimal. 

 

2 Matricial Model of Computation  

An algebraic model of computation has been defined by M.L.Fredman (see [3]) for the study of the partial sums 
problem – a particular case of the range query problem in which the first argument of any operation is fixed and 
equal 1. It consists in defining the operations update and retrieve through pairs of zero-one matrices R, U 
verifying that their product is matrix T, where T is defined as  

T=(tij)i,j=1..n        with    tij=
⎩
⎨
⎧ ≥

ji
ji

p0
1

 

 

We establish in this section an algebraic model for the study of the more general problem known as the range 
query problem.  
 

Our model includes all programs verifying: 
• A set of variables Z={z1,z2…zm} which stores values in S is maintained, organized as an array. 
• The operation retrieve(i,j) is executed adding up a subset of these  variables. 
• The operation update(j,x) is executed incrementing a subset of these variables by amounts which 

depend linearly on x. 
 

Thus the model consists on triples <Z,R,U> where Z is the array, R=(rij) is a zero-one matrix of dimension 

mnn
×

+
2

)1( , and U=(uij) is a zero-one matrix of dimension nm×  (m, the number of required program 

variables, may change although it has to be greater or equal n). 
 

Associated with a triple there are the following programs to implement the update and retrieve operations. 
 

Definition 1 
If  <Z,R,U>  is a triple for the range query problem of size n, then the operations update and retrieve must be 
implemented through the following programs: 

• update(j,x)  :     for l:=1 to m do   [ xuzz ljll +← ] 

• retrieve(i,j)  :     output ∑
=

m

l
lkl zr

1
,    where      )1()(

2

0
+−+−= ∑

−

=

ijsnk
i

s
 

 

Lemma 2 below establishes a condition on R,U which implies the correction of the programs given in Definition 1. 
 

Lemma  2 

Let H be the nnn
×

+
2

)1(
 dimensional matrix defined by: 
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Hij=
⎩
⎨
⎧ −−+≤≤ −

otherwise
wiljl l

0
)1(1 1  

where 

 wk   =  ∑
−

=

−
1

0

)(
k

l

ln ,               k=0…n 

 i     ∈  {(wl-1+1)…wl},            l=1…n   
 
Then the programs in Definition 1 are correct if and only if RxU=H. 
Proof 
We find inspiration in the proof used in [3] (see Lemma 1 of [3]) to prove the correctness of the algorithms 
implementing the update and retrieve operations concerning the partial sums problem. 
We have to consider the effect of the consecutive execution of operations  [retrieve(i,j) ,update(r,x),retrieve(i,j)] 
for any  i,j,r { }n...1∈  , x∈S. 
Let q1,q2 be the output produced as a result of executing the two operations retrieve(i,j), the first and the second 
respectively. 
From the definition of the operations given at the beginning of the Introduction section (see (1) in that section), it 
is obvious that the programs defined in Definition 1 are correct if and only if  

⎩
⎨
⎧ ≤≤

=−
otherwise

jrix
qq

012  

But    ∑
=

=
m

l
lkl zrq

1
1 ,  ∑
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+=
m

l
lrlkl xuzrq

1
2 )(     with    ),1()1()( 1

2
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−

=
∑ ijwijsnk i
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and so       ∑
=

=−
m

l
lrkl xurqq

1
12 .)(  

By the definition of matrix H given in Lemma 2, and given that 

⎥
⎦

⎤
⎢
⎣

⎡
+−+−= ∑

−

=

2

0
)1()(

i

s
ijsnk { }ii wwk )...1( 1 +∈⇒ − , 

we have 

⎩
⎨
⎧ −−+≤≤

= −

otherwise
wkiri

H i
kr 0

)1(1 1  

But jijiwki i =−+−+=−−+ − 1)1()1( 1 , and the result may be deduced immediately.  
 
Remark 3 
Let us observe that if nT  is the nxn dimensional matrix  

T=(tij)i,j=1..n        with    tij=
⎩
⎨
⎧ ≥

ji
ji

p0
1

 

then we have that for all  )1...(0 −= nk  

0]..1[],..1[

]..1[],..1[

1

1

=
=

+

+

+

−
++

kww

kn
nkww

kk

kk

H
TH

 

where   ∑
−

=

−=
1

0
)(

i

s
i snw   for i=0..n,  H[i..j],[r..s]≡ the block of matrix H integrated by the rows belonging to the 

interval [i..j] and the columns belonging to the interval [r..s]. 
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So, for any size n of the range query problem, we may describe the corresponding matrix Hn through matrix T as 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−

−

)1(

1

nn

n

n

T

T
T

H
M

 

where 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= −− inin TT

00

00

KK

MM

MM

KK

         i=1..(n-1) 

 
Example 4 
Let us see the matrix H corresponding to the range query problems of size n=2 and n=4, which are named as H2 
and H4 respectively. We have set the natural division in blocks off. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

10
11
01

2H ,                                                        

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1000
1100
0100
1110
0110
0010
1111
0111
0011
0001

4H  

 

Lemma 5 below establishes a result concerning the number of program variables z1..zm required to implement 
any solution for the range query problem. 
 

Lemma 5 
Let  R, U be zero-one matrices of dimensions  nxm  and mxn  respectively such that  RxU=Hn . 
Then we have that .mn ≤   
 

Proof 
First of all we prove that  for any  A, B zero-one matrices of dimensions  nxm  and  mxn  respectively such that   
AxB=Tn,  we have that .mn ≤  
Let us proceed with this proof. We denote  r, u, t   the linear mappings associated with matrices  A, B, Tn 
respectively. Then 

nrmun RRR ⎯→⎯⎯→⎯   

From ,BAT o=  it follows .))dim(Im()))((dim())dim(Im( mrRurtn n ≤≤==  So, necessarily 
.mn ≤  
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Now let .nHUR =×  Given that the product of the first n rows of R by matrix U is  matrix  Tn , we conclude 
trivially our result.  
 

The following result connects the solutions for the range query problem inside our matricial model with the ones 
within the setting introduced in [7] that may be found also at the beginning of the Introduction section in this 
paper. 
 

Remark 6 
Given a triple <Z,R,U> which represents a solution for the range query problem of size n within our matricial 
model, where Z=(z1..zm), R=( ijr )(n(n+1)/2)xm , U=(uij)mxn , and given { }mYY K1 , { }njiR ij K1,/ =  defined 
as in Section 1, we have that 

⎪⎩

⎪
⎨
⎧

−++−=∈= ∑
−

=

otherwise

snkliRjr
k

s
kl

ij

0

)()1(1
2

0  

⎩
⎨
⎧ ∈

=
otherwise

Yj
u i

ij 0
1

 

 

Definition 7 below establishes the complexity of the operations within our model. 
 

Defintion 7 
Given the triple  <Z,R,U> which represents a solution for the range query problem of size n within our matricial 
model, where  Z=(z1..zm), R=( ijr )(n(n+1)/2)xm   and   U=(uij)mxn,  ,  we define  

• Complexity of the operation retrieve(i,j):  

{ }|)1(0/| mlrr klkl ≤≤∧≠    where    ∑
−

=

−++−=
2

0
)()1(

i

s
snijk  

• Complexity of the operation update(j,x): 
{ }|)1(0/| mluu ljlj ≤≤∧≠     

 

3 Lower Bound for the Sum of the Average Complexities  

In this section we obtain a lower bound for the sum of the average complexity of the operations update and the 
average complexity of the operations retrieve which improves previously obtained lower bounds relating to this 
sum. We work inside our matricial model. 
 

Let R, U be zero-one matrices representing a solution for the range query problem of size n, that is to say, such 
that  RxU=Hn. 
 

Assuming that  m  is the number of columns of matrix R and thus the number of rows of U, we have that the 
average complexity of the update operations is  

n

u
p

m

i

n

j
ij∑ ∑

= == 1 1  

and the average complexity of the retrieve operation is 
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2
1

21

1 1

)n(n

r
t

/)n(n

i

m

j
ij

+
=

∑ ∑
+

= =  

In [7] has been established that for any data structure we have that  )(logntp Ω=+  (see Theorem 1 of [7]), 
and more exactly, the result says that 

tnnpnnOnn e 2
)1(22)(log)9/2( 222 +

+≤+  

(from this inequality a lower bound for p+t may be obtained with little calculation). 
We provide a different method which let us obtain easily a lower bound for  tnnpn )1(2 2 ++   by  reusing the 
knowledge  of an optimal lower bound for the average complexity of the operations update and retrieve (all of 
them being considered together in this case) with regard to the partial sums problem of size n. 
It has been proved (see [6]) that for  ,22 1+<≤ kk n  we have that if  AxB=Tn, being A and B  nxm  and mxn  
dimensional matrices respectively, then  

∑∑ ∑∑
= = = =

+−++≥+
n

i

m

j

k
m

i

n

j
ijij mnnnba

1 1 1
22

1
2)2(][log][log  

 

We proceed to obtain a lower bound for  tnnpn )1(2 2 ++  . It must be observed that we will reach a lower 
bound I which the constant factor affecting the term which leads the expression is greater that the one in the 

lower bound obtained in [7]: ours is ,log2
2 nn  meanwhile the one in [7] is .log

9
22 ⎟

⎠
⎞

⎜
⎝
⎛ nn e In particular, 

.log
9
25log2 ⎟

⎠
⎞

⎜
⎝
⎛> nn e  

 

Theorem 8 
Let R, U  be zero-one matrices such that  RxU=Hn. 
Then we have that 

tnnpn )1(2 2 ++ ennnenn 2222
2 log

4
102log2)log

2
1(log +++−≥  
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and  m represents the number of columns in matriz R  and tus the number of rows in U. 
 

Proof 
We have that  

⎟
⎟
⎟
⎟
⎟

⎠
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where 
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Let ]1[],[ mjiR KK  be the block consisting of the rows of R belonging the interval [i..j], for  
.2/)1(1 +≤≤≤ nnji   

 
We consider matrix R  as divided in  n  blocks,  R1..Rn,  where  R1  consists of the first  n  rows of R,  R2 of  the 
following (n-1) rows…and being the last block  Rn  formed exclusively by  the last row of R. That is to say, if we 

call   ,)(
1

0
∑
−

=

−=
i

j
i jnz      ,0 ni K=  then    .1,11 mzzi ii

RR KK+−
=  

Using this notation we have that  .1+−=× in
i TUR  

 
We apply  the lower bound that we already know for the partial sums problem to every pair  Ri ,  U  with 

ni K1=   (see [6]).  Let us observe that  pnt
n

UnR 2

2
|||| +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+   where |R|,  |U|  denotes the number of 

non-zero entries in matrix R and U respectively . 
 
We have 
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Let us call     2log)12(log)1()( 22 ++++= Knnnδ     and then we have 
         nnUnR 2)(|||| +≥+ δ  

We observe that 
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and we are trying to establish a lower bound for   .)1(2 2 tnnpn ++  
 

Let  .log)1()( 2 xxxf +=   Then 

∫ ∫
+

≤≤
n n

dxxfndxxf
1

1

2
)()()( δ  

 

Considering  ,logloglog 22 xex e=  we integrate the expression 

∫ + xdxxe elog)1(log2  
 

so if  we call 
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2/)1()1(
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then 
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(the constant factor   log2e  will be taken into account later) 
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Multiplying by 2 both sides of the inequality we obtain the result stated in this theorem, that is 

tnnpn )1(2 2 ++ ennnenn 2222
2 log

4
102log2)log

2
1(log +++−≥ . 

 

Remark 9 
Let us observe that from this result a lower bound of  )(lognΩ  for  tp +  can be deduced: dividing both sides 
of the final inequality by  22n  we obtain  

,8/)log10(4/)(log/1/)(loglog
2
1

2
1 2

2224 neennnnt
n

p +−++≥⎟
⎠
⎞

⎜
⎝
⎛ ++   and  so, given that  

1
2
1

2
1

≤+
n

      ,1≥∀n     we conclude that   .)(logntp Ω∈+  
 

4 Complexity of Certain Data Structures 

In this section we establish the value of  tp +   for some previously defined data structures solving our problem 

–  more precisely , we provide the amount  pnt
n 2

2
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
.  In particular, trees have been defined in [7] (see 

Theorem 2 in that paper) verifying   that  given a fixed integer  k,  the worst  case complexity of an update 

operation is k , and the  worst case complexity of a retrieve is  )( 1
1
−knO .  The definition of the trees satisfying 

these conditions is straightforward, based on the use of an  n1/(k-1)-ary tree of height  k  with  n  leaves. An 
update(j,x) operation has to be executed incrementing by  x  the value stored in the  j-th  leaf from left to right and 
in all the nodes belonging to the path from this leaf to the root, and a retrieve(j,x) operation has to be executed 
adding up the values in the minimum set of nodes verifying that the union of its successors includes exactly the 
leaves from  i  to  j, and the intersection of its successors is disjoint pairwise  - the idea is that each internal node 
stores the sum of the values in its sons. 
Let  1−hr

T   denote the  r-ary  tree of deep  h  with   n=rh-1  leaves.  We  claim 
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Theorem 10 
Given    1−hr

T  ,  we have that 
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Proof 
The proof involves heavy calculation and will not be included in this paper.    
 

If we compare the result stated in Theorem 10 with our lower bound for  pnt
n 2

2
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 we obtain the following 

corollary. 
 
Corollary 11 

Given      1−hr
T  ,  in order to minimize the amount   pnt

n 2

2
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
  we must choose  r=2,  h=log2n+1, being n=rh-1. 

In this case we have that   pnt
n 2

2
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= )(log3 2

4
2 nnn Θ− .  In Theorem 8 we proved that  

)(log
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2
4

22 nnnpnt
n

Θ−≥+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,  so this lower bound is near optimal. Let us observe that this means that 

the  )(lognΩ  lower bound for  p+t  is optimal in terms of asymptotic complexity. 
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