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GENERALIZATION BY COMPUTATION THROUGH MEMORY 

Petro Gopych 

Abstract: Usually, generalization is considered as a function of learning from a set of examples. In present work 
on the basis of recent neural network assembly memory model (NNAMM), a biologically plausible 'grandmother' 
model for vision, where each separate memory unit itself can generalize, has been proposed. For such a 
generalization by computation through memory, analytical formulae and numerical procedure are found to 
calculate exactly the perfectly learned memory unit's generalization ability. The model's memory has complex 
hierarchical structure, can be learned from one example by a one-step process, and may be considered as a 
semi-representational one. A simple binary neural network for bell-shaped tuning is described.  
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1. Introduction 

We know from our everyday experience that even under difficult observation conditions, the recognition of 
complex visual objects occurs in practice immediately, in an on-line regime. The ability to recognize visual objects 
regardless of the side of view, their illumination, occlusion, or particular distortion is called generalization ability; 
up to present its brain mechanisms remain unclear [1].  
In real life, any two successive images, although they correspond to the same particular object, cannot coincide 
literally, point-by-point. As a result the amount of all possible images of all possible objects to be recognized is 
extremely large and, consequently, they the all cannot be stored in human memory even of very large but limited 
capacity. To overcome this difficult problem, it is supposed that it is enough to remember labels of only some 
typical images (examples) and to learn the common memory/generalization system to predict to a huge amount 
of unknown images, not storing in memory. Such a statement of the problem implies that for a given object each 
its particular image can continuously be transformed, possibly not too sharp, into any other its image through an 
infinite continuous series of its intermediate images.  
The classic learning theory [2] gives a formal definition of generalization and rules to ensure it. For the 
generalization purposes, the leaning theory provides the best possible functional relationship between an input 
image, x, and its label, y, by learning from a set of n examples, xi, yi. This problem is similar to the problem of 
fitting a continuous smooth function of some arguments to measurement data, xi, yi, or, in other words, the ability 
of estimating correctly the values of this function in points where data are not available (i.e. it is assumed implicitly 
that sets of unknown images and their labels are continuous).  
Within this approach, for a given training set (xi, yi; i = 1, 2, …, n), the empirical risk minimization (ERM) learning 
algorithm can find the estimated interpolating function f which minimizes empirical error — the quantity defining 
through a loss function the quality of fitting f to the training set of examples. To provide the good generalization, f 
should also guarantee the minimization of predictive error — the quantity defining through the same loss function 
the quality of fitting f to new samples — in such a way that the difference between empirical and predictive errors 
is zero in probability as n → ∞. It may be possible if f, chosen from a given functional hypothesis space, is simple 
enough. In general case (for finite sets of examples and complex hypothesis spaces) by using the classic ERM 
learning, the solution needed it is not always possible to find [2,3]. For this reason a new paradigm of learning 
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was proposed which provides 'conditions for generalization in terms of precise stability property of the learning 
process: when training set is perturbed by deleting one example, the learned hypothesis does not change much' 
[3]. This stability criterion means that if after deleting any ith training sample (example) from any large training set 
of samples (examples) almost always the learned interpolating function f changes in small, then it generalizes 
well. Formally it is demanded a cross-validation leave-one-out stability with stability of empirical and expected 
errors: for any i, for sets of training samples S and Si (Si is the set S with the deleted item i), supremums of 
differences between corresponding loss functions, corresponding empirical errors, and corresponding expected 
errors equal zero in probability as n → ∞. Such stability ensures that good (predictive) generalization functions 
may be found by not only the ERM process but also other learning algorithms [3] and, consequently, this method 
of generalization is suitable (see ref. 3 and references therein) for solving those practical problems where classic 
ERM learning [2] does not work. But for both cases (minimization of empirical error within a given hypothesis 
space or stabilization of the learning process), the important challenge of the finiteness of training sets remains 
unsolved because all above results are valid only asymptotically (n → ∞), i.e. for a rather large amount of training 
examples.  
The approach based on learning from a set of examples is not the only possible. Indeed, it is naturally to assume 
that in human visual system the real world is actually represented as a set/series of 'frames,' discrete and only 
perceived continuously (as in a movie). If it is, then the amount of information needed to be maintained reduces 
crucially and for this reason memory system, serving vision and dealing with a finite set of discrete images, may 
computationally become simpler. This work follows such an alternative approach. 

2. Generalization by Interpolating among Examples 

Within the classic learning theory [2], generalization by interpolating among examples supports a popular neural 
network (NN) architecture that combines the activity of some hidden broadly tuned 'units' (local NN circuits), each 
of which is learned to respond to one of the training examples optimally and to a variety of other images at sub-
maximal firing rates. This idea is consistent with the fact that bell-shaped tuning is common among neurons in 
visual cortex and that in infero-temporal cortex, IT, there exist neurons tuned to different complex objects or their 
parts. 
Mathematically, using the method of regularization, the learning from examples may be formulated as 
measurement data approximation by a smooth function, f(x) = ∑wik(x,xi), which minimizes the empirical error 
(error of training); here f(x) is a weighted sum (weights wi) of basis functions, k(x,xi), depending on a new 
(unknown) image, x. For example, function k(x,xi) may be a radial Gaussian centered on xi, representing the ith 
neuron's receptive field, and responding optimally to (memorizing) xi (that is so called radial basic function 
approach, RBF). The width of k(x,xi) defines also the unit's selectivity as a memory device: for broadly tuned k, its 
selectivity is poor but a linear combination of such functions provides a good generalization ability; for sharply 
tuned k (e.g., a delta function or very narrow Gaussian), its selectivity is perfect but such a k(x,xi) cannot be used 
for generalization. In f(x), functions k(x,xi) may be learned from their inputs, xi, in a passive regime (without the 
feedback) while weights, wi, depend also on outputs, yi, and demand more complicate iterative learning from 
examples, xi, yi. That is, the learning process splits into two parts: learning the basis functions (memory units and, 
simultaneously, neuron receptive fields) and learning the weights of the whole network (learning to generalize 
using already learned memory units). The algorithm described can implement a feedforward NN with one hidden 
layer containing as many units as training examples; parameters wi are interpreted as synaptic weights between 
corresponding units and the output, f(x) [1].  
In this case [1] the ability to generalize is traditionally [2,3] grounded on the use of many training examples and is 
paid by the poor selectivity of all memory units (a large value of the regularization parameter), the assumption of 
low biological plausibility. 
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3. 'Grandmother' Model for Vision  

In the classic 'grandmother' theory for vision, an image recognition happens when the combination of all its 
features precisely coincides with such a combination associated with particular grandmother neuron, i.e. in this 
case between the input image and different memory records a direct literally comparison is needed. The lack of 
generalization is the basic problem of such a model. To solve it, the model was essentially extended: it is 
supposed that 'generalization emerges from linear combinations of neurons tuned to an optimal stimulus' [1] (see 
also Section 2). We propose another extension solving the generalization problem under assumption that each 
memory unit itself can generalize. 
As Figure 1 demonstrates, in our model all sensory-specific stages of input visual data processing coincide 
completely with those that Poggio & Bizzi [1] discussed and, consequently, in this part both models are 
biologically equally plausible. In particular, in the model proposed AIT neurons (open circles), tuned to respond to 
complex visual images, are also used although in present work the architecture and operation of local NN circuits, 
employed for tuning, are quite different (see Section 5). But the main distinction between our model (Figure 1) 
and Poggio & Bizzi model (Figure 2 in [1]) consists in the structure of their sensory-independent parts: in Figure 1, 
it is grounded on the neural network assembly memory model, NNAMM, discussed in Section 4 [4]. 
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Figure 1. An oversimplified scheme of a 'grandmother' model for vision based on the NNAMM [4]. At the bottom, 
in V1, cells have small receptive fields and respond preferably to oriented bars; along the ventral visual stream 
they increase gradually their receptive fields and complexity of their preferable images and at the top, in AIT, 
neurons respond optimally already to rather complex objects. AIT neurons 1,…,N (open circles) could code the 
image of current interest, e.g. a face, as a binary (±1) feature vector xin; other similar neurons (filled circles) can 
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code (respond optimally to) other complex objects. Boxes M and F correspond to assembly memory units, AMUs 
(Figure 2), storing reference codes (representations) of the 'ideal' (reference) male, x0M, and female, x0F, faces; 
boxes 1,…,K denote AMUs storing the codes (representations) x01,…,x0K which represent known (previously 
encountered) faces 1,…,K, regardless of their categorization. The case is presented where a current face feature 
code xin, extracted from the current visual input, is recognized as the face number 2 and categorized as a male 
face (xin initiates the correct retrieval of memory traces x0M and x02 designated as output arrows from boxes M and 
2, respectively). In the insertion, a feedforward NN, related to particular AMUi and storing the code 
(representation) x0i, is shown (see also box 2 in Figure 2; AIT neurons 1,…,N may be equivalent to exit-layer 
neurons of such an NN). If xin does not correspond to one of the codes (representations) x01,…,x0K but is 
recognized as x0M or x0F then it can be remembered in the (K + 1)th empty AMU, AMUK + 1, which is not shown. 
V1, primary visual cortex; V2 and V4, extrastriate visual areas; IT, infero-temporal cortex; AIT, anterior IT; PIT, 
posterior IT; PFC, prefrontal cortex; SCA, subcortical areas (e.g., as it is shown in Section 4.2, hippocampus). 
We suppose that visual memory is constructed as a set of the NNAMM's assembly memory units, AMUs (Figure 
2 in Section 4.2), interconnected between each other and storing only one memory trace per one AMU. Memory 
traces are N-dimensional binary (±1) vectors represented particular images (e.g., known faces, x01,…,x0K) or 
categories of such images (e.g., male, x0M, and female, x0F, faces). Tuned AIT neurons 1,…,N (open circles) 
convey the code xin, extracted from the current visual input at sensory-specific stages of data processing and 
representing the current face, to all AMUs devoted to vision. Similar codes of other images, available in the 
current visual input, are also extracted and other tuned neurons (filled circles) convey them to all AMUs devoted 
to vision. But by means of a spatio-temporal synchrony mechanism and anatomically in part, the AMUs shown 
select only the code of their interest, xin; other similar codes may be the codes of interest for other AMUs, which 
are not shown.  
Even if the analyzed visual scene is stable, the current (at the moment t0) visual input may slightly be changed, 
for example, due to a saccadic eye movement. In such a case, at the next moment, t1, the hierarchy of tuned local 
NN circuits, constituting the pathways of sensory-specific stages of initial visual signal processing (see Figure 1 
and Section 5), produces, most probably, binary feature vector xin(t1) which is equal to previous one, xin(t0). As 
xin(t0) = xin(t1), at sensory-independent but memory-specific stage of data processing, xin(t1) initiates the 
recall/retrieval of memory patterns, the same as xin(t0) initiates, e.g., x0M and x02 (see Figure 1). That is, in 
numerous slightly (even continually) changed visual inputs, it takes place the recall/recognition of the same image 
of interest (e.g., a face) of the same category (e.g., male faces) whose binary representations in visual memory 
are vectors x0M and x02, respectively.  
If in two successive visual scenes the difference between images of interest is not very small and not very large 
simultaneously then visual pathways mentioned at moments t0 and t1 may produce binary feature vectors xin(t0) 
and xin(t1) which are different but related to the same finite set of them characterized by the same value of the 
damage degree, d, or intensity of cue, q (see Section 4.1). In such a case, in spite of the fact that xin(t0) ≠ xin(t1), 
at sensory-independent but memory-specific stage of visual data processing, xin(t1) initiates the recall/retrieval of 
memory patterns x0M and x02, the same as xin(t0) initiates, with the same probabilities defined by Equation 5 or 6. 
That is, in numerous visual inputs containing rather changed or damaged images of interest, it also takes place 
their equally successful categorization and recall/recognition. 
If the difference between images of interest in successive visual scenes is large then sensory-specific visual 
pathways may produce feature vectors xin(t0) and xin(t1) which are related to different sets of them characterized 
by different values of d (or q ). In such a case, xin(t1) also initiates successful recall/retrieval of patterns x0M and 
x02, the same as xin(t0) initiates, but already with other probabilities. That is, even in numerous visual inputs 
containing essentially changed or damaged images of interest, their successful categorization and 
recall/recognition takes also place.  
Consequently, the model for vision proposed provides successful categorization and recall/recognition of  
numerous changed, in particular essentially changed, versions of the same visual image employing its single 



International Journal "Information Theories & Applications" Vol.13 
 

 

 

149

binary representation, x0, stored in visual memory. In other words, it implements the idea of generalization in its 
conventional form (Section 1) but in a new way — by generalization through a single NNAMM memory unit, AMU, 
storing only one binary representation, x0, of all possible versions of the image of interest, which may differ from 
each other in small as well as in large.  
As one can see, a learned AMU itself ensures generalization (recall/generalization) of only its binary inputs, xin, 
(Section 4.1) with the probability may be calculated exactly (Equation 5 or 6). To find the probability of 
generalization (recall/recognition) of any initial half-tone visual image completely, the probability of producing 
these binary feature vectors, xin, is also required. For solving the latter problem, we should specify beforehand the 
architecture of sensory-specific visual pathways (Figure 1) as a hierarchy of tuned local NN circuits, extracting 
step-by-step from the initial image its more and more general features/properties (see also Section 5). When this 
hierarchical architecture (specific, in general, for each category of images of interest) will completely be 
constructed, its performance may be found as performance of a device built in a known manner from building 
blocks with known properties. Hence, the content of particular visual memory is jointly defined by the content of 
corresponding AMU (a rather short binary vector x0) and complete hierarchical architecture of tuned local NN 
circuits, which perform a sensory-specific visual data processing and extract from complex initial input the feature 
vector xin that, in turn, initiates the retrieval of x0. Very early (in the retina) stages of this many-stage process play 
a special role because here the binarization of initial half-tone images is carried out and the quality of binarization 
exerts an essential influence on the quality of the final representation of images in the entire visual system. As it 
was empirically demonstrated [5], the binarization required may be performed optimally, without the loss of 
information essential for the following binary data processing according to optimal binary algorithms described in 
Section 4.1. 
Within the model proposed, representation of an image in visual system may be considered as a complex 
dynamic process consisting of three successive stages: i) binarization (in the retina) of an initial half-tone image; 
ii) allocating essential features of the image binarized and production of its rather short binary representation, x0 
(in a hierarchical architecture of local functionally similar tuned NN circuits which constitute visual data processing 
pathways); iii) storing x0 (in visual memory) and its multi-purpose use for planning and maintaining different 
possible mental and behavioral operations. Owing to this three-level structure of data processing and due to the 
data graduate compression, the code (representation) x0 stored in visual memory can along not specify 
completely its corresponding visual (perceptual) input and the same x0, but in memory devoted to another 
modality, could in general code (represent) a quite different object or idea, for example, the odour of a perfume (if 
x0 is stored in olfactory memory). For the same reason, each visual (perceptual) memory (each AMU) should 
intimately be related to corresponding final stages of their sensory-specific pathways, strictly anatomically 
defined. Consequently, according to the model, in the brain should exist areas preferably devoted and responded 
to different specific memories and to specific categories of these memories. This theoretical prediction is 
completely consistent with the available anatomical findings demonstrating that is actually the fact. For example, 
the fusiform face area (a part of fusiform gyrus located in brain temporal lobe) is devoted to face perception in 
humans [6,7]. Brain damages to or near to the fusiform face area lead to specific mental disorder — 
prosopagnosia, an inability to perceive faces while all other mental properties remain intact [8]. Some persons 
suffered of prosopagnosia retain, in spite of that, the ability of face categorization (e.g., they differ males from 
females or olds from youngs) and can correctly identify faces of familiar persons unconsciously (e.g., their 
galvanic skin response rises when they hear the correct name). These neuropsychology findings are also 
consistent with the model proposed which predicts, in particular, that brain areas devoted to face recognition and 
face categorization should anatomically be segregated in part, that face perception is a many-stage process in a 
hierarchical brain structure (visual pathways in Figure 1) with anatomically segregated levels (areas) and 
damages to higher levels (areas) of visual pathways do not hinder the normal functioning of their lower levels 
(areas). 
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As it has been pointed out, an initial half-tone visual input can be binarized optimally, without the loss of 
information essential for the further processing of obtained binary data [5]. Perfectly learned local NN units 
(Section 5) and AMUs (Section 4.2) processing this data also operate over their binary inputs optimally (in the 
sense of pattern recognition quality, Section 4.1). Consequently, if the chain a binarization device (retina)—
feature-extractive hierarchical architecture of tuned local NN units (sensory-specific visual pathways)—AMUs 
(visual memory, as in Figure 1) is constructed (hard-wired) in an optimal manner (that is the problem of animal 
evolution or an engineer who builds a machine, data processing system or device) then its operation performance 
may also be optimal. In sum: within the model proposed, for each specific category of images, the entire visual 
data processing system/algorithm may surely be optimal but the architecture, needed to implement this 
theoretical possibility as an algorithm or device, is not specified so far completely.  
For the construction of optimal data processing architecture providing generalization through memory of visual 
images of different categories, only its building blocks (learned AMUs and tuned local NN units) having optimal 
operation performance are now available. But that is enough to conclude that such a future system/algorithm 
cannot solve the inverse problem: reconstruction of the initial visual input when its binary representation (x0 stored 
in an AMU), properties of the retina, tuned local NN units, AMU and their connections are known. The reason is in 
the irreversibility of these all components constituting jointly the hierarchical architecture required. For example, a 
learned two-layer NN, the heart of all AMUs and tuned local NN units, is served by a finite set of its input binary 
vectors xin and has only the single output, x0, providing the solution and specified strictly by the additional learned 
'grandmother' neuron (Section 4.1). From these follows directly the convergence of learned AMUs and tuned local 
NN circuits (by definition, all their inputs, xin, lead to the single solution, x0, stored in corresponding NN and its 
learned 'grandmother' neuron) and, simultaneously, their irreversibility (by definition, their the given solution, x0, 
cannot exactly specify that one of many particular NN inputs, xin, which has earlier initiated the recall/retrieval of 
x0). It is clear that the reversible processing system (computer algorithm) required to solve an inverse problem 
cannot be built from irreversible components.  
There exists two opposite viewpoints of the nature of human memory. On the one hand, traditionally (e.g., [1]), it 
is supposed that objects, actions, etc are stored in memory as their representations, i.e., as coded messages 
may be used, if necessary, as instructions governing the learned mental or physical behavior. On the other hand, 
it was introduced the so called nonrepresentational memory, an ability of dynamic system 'to repeat or suppress a 
mental or physical act' or an 'ordered sequence of brain activities … that, in time, leads to a particular neuron 
output.' 'In this view, a memory is dynamically generated from the activity of selected subsets of circuits' [9]. 
Within our BSDT/NNAMM approach, a memory is defined as consisting of two closely related parts: the 
representational code x0, stored in an AMU related to particular visual (perceptual) memory, and the stream of 
neuron activity, dynamically generated in visual pathways and directed from the retina to the AMU mentioned. 
That is, our memory model has some properties of representational as well as nonrepresentational memories and 
may be qualified as a semi-representational one.  
In contrast to Section 2, the NNAMM's memory unit itself provides perfect memory trace selectivity as well as 
generalization through memory. Because each AMU contains a 'grandmother' neuron (for details see Sections 4 
and 5), we can consider the model for vision introduced as a 'grandmother' one. 

4. NNAMM as a Memory Model Used  

P.M.Gopych has proposed a ternary/binary data coding and demonstrated [10] that corresponding NN decoding 
algorithm (inspired by J.J.Hopfield [11]) is simultaneously the retrieval mechanism for an NN memory. As NNs 
used for data decoding and memory storing/retrieval are the same (see insertion in Figure 1), they have also 
common data-decoding/memory-retrieval performance (Section 4.3). Later this data coding/decoding approach 
was developed into the binary signal detection theory (BSDT) [12] and neural network assembly memory model 
(NNAMM) [4] closely interrelated in their roots and providing the best quality performance. The price paid for the 
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NNAMM optimality is the fact that it places each memory trace in its own AMU (an estimation of human memory 
capacity, though it is possibly too optimistic — 108432 bits [13], supports this assumption). 

4.1 Formal Background  

Let us denote a vector with components xi (i = 1,…,N), whose magnitudes are ±1, as x. It can carry N bits of 
information and its dimension N is the size of a local receptive field for the NN/convolutional feature discrimination 
algorithm [5] or the size of an NN memory unit discussed below. If x represents information stored or that should 
be stored in the NN then we term it reference vector x0.  If the signs of all components of x are randomly chosen 
with uniform probability, ½, then that is random vector xr or binary noise. We define also a damaged reference 
vector x(d) with components  
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where marks ui take magnitudes 0 or 1 and may randomly be chosen with uniform probability, ½; d is a damage 
degree of x0. If the number of marks ui = 1 is m then the fraction of noise components in x(d) is d = m/N; 0 ≤ d ≤ 
1, x(0) = x0 and x(1) = xr. The fraction of intact components of x0 in x(d), q = 1 – d, is intensity of cue or cue index; 
0 ≤ q ≤ 1, q + d = 1, d and q are proper fractions. For a given d = m/N, the number of different vectors x(d) is 
2mCNm, CNm = N!/(N – m)!/m!; for d ranged 0 ≤ d ≤ 1, complete finite set of all vectors x(d) consists of ∑2mCNm = 
3N elements (m = 0,1,…,N).  
For decoding the data coded as described, we use a two-layer NN with N McCalloch-Pitts model neurons in its 
entrance and exit layers; these neurons are linked as in the insertion of Figure 1, 'all-entrance-layer-neurons-to-
all-exit-layer-neurons.'  
For a learned NN, its synapse matrix elements, wij, are  

          ji
ij xxw 00ξ =    (2) 

where ξ > 0 is a parameter (below ξ = 1); xi0 and xj0 are the ith and the jth components of x0, respectively. Hence, 
the matrix w is defined by vector x0 and Equation 2 unambiguously. We refer to w as the perfectly learned NN and 
it is of crucial importance that it remembers only one pattern x0 (the available possibility of storing other memories 
in the same NN is intentionally disregarded). It is also assumed that the NN's input vector xin is decoded 
(reference or state vector x0 is extracted) successfully if the learned NN transforms an xin into the output vector 
xout = x0 (an additional 'grandmother' neuron checks this fact; see also Sections 3, 4.2, 5, and ref. 14).  

The transformation algorithm is the following. For the jth exit-layer neuron, its input signal, hj, is  

          ∑= ,iijj vwh    Ni ,...,1=  (3) 

where vi  is an output signal of the ith entrance-layer neuron. The jth exit-layer neuron's output, xjout, is calculated 
by a rectangular response function with the neuron’s triggering threshold θ ≥ 0 (for the case θ < 0, see ref. 14): 
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where for hj = θ  the value vj = –1 is arbitrary assigned. 
Since entrance-layer neurons of the NN used play only the role of input fan-outs, which convey their inputs to all 
exit-layer neurons, in Equation 3 vi = xiin. Of this fact and Equations 3 and 4 for the jth exit layer neuron we have: 
hj = ∑wijxiin = xj0∑xi0xiin = xj0Q where Q = ∑xi0xiin is a convolution of x0 and xin. The substitution of hj = xj0Q into 



International Journal "Information Theories & Applications" Vol.13 
 

 

 

152 

Equation 4 gives that xout = x0 and an input vector xin is decoded (reference vector x0 is extracted) successfully if Q 
> θ. Since for each xin exists such a vector x(d) that xin = x(d), inequality Q > θ can also be written as a function of 
d = m/N: Q(d) = ∑xi0xi(d) > θ (i = 1,2,…,N) where θ is the threshold of Q and, simultaneously, the neuron’s 
triggering threshold. Hence, for perfectly learned intact NNs, NN and convolutional decoding algorithms are 
functionally equivalent.  
Since Q > θ and D = (N – Q)/2, where D is Hamming distance between x0 and specific x(d), the inequality D < (N 
– θ)/2 is also valid and NN, convolutional, and Hamming distance decoding algorithms mentioned are equivalent. 
As Hamming decoding algorithm is the best (optimal) in the sense of statistical pattern recognition quality (i.e., 
there is no other algorithm outperforming it), NN and convolutional algorithms are also optimal (the best). 
Moreover, similar decoding algorithms based on locally damaged NNs may also be optimal [4,15] (see example 
in Table 1 of Section 6). 

4.2 AMU's Architecture  

We saw that a two-layer NN (as in the insertion of Figure 1) can be used for optimal one-trace memory 
storing/retrieval. But for such an NN, one separate randomly chosen vector xin = x(d) can initiate successful 
retrieval only randomly. Thus, to implement the model's possibilities completely, the retrieval should be initiated 
by a series of different vectors xin and it happens when one of the next xin leads suddenly to the emergence of the 
output xout = x0. For this reason the minimal architecture, needed to provide optimal memory trace retrieval from 
the learned NN (box 2), should be as in Figure 2. Because the retrieval is initiated by vectors x(d), which 
constitute complete finite set of binary representations of those images (or 'frames') that were mentioned in the 
last paragraph of Section 1, such an architecture provides also the optimal generalization by computation through 
memory. The internal loop, 1-2-3-4-1, ensures the generation of different (e.g., random) vectors xin = x(d) with a 
given value of d while the external loop, 1-2-3-4-5-6-1, maintains the internal one.  
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Figure 2. The flow chart (the architecture) of an assembly memory unit, AMU, and its short-distance environment 
adopted from [4]. The structure of the NN memory unit (box 2) specifies the insertion in Figure 1. Pathways and 
connections are shown in thick and thin arrows, respectively. 
 

Within the NNAMM, the whole memory is a very large set of interconnected AMUs of rather small capacity (N ~ 
100 or less), organized hierarchically. An AMU (Figure 2) consists of boxes 1, 2 and 6, diamonds 3, 4 and 5; their 
internal and external pathways and connections are designed to propagate synchronized groups of signals 
[vectors x(d)] and asynchronous control information, respectively. AMUs implement directly the BSDT for solving 
the problem of optimal generalization and memory storing/retrieval. 
Box 1 (a kind of N-channel time gate) transforms initial ternary (0,±1) sparsely coded very-high-dimensional 
vectors into binary (±1) densely coded and rather low-dimensional ones. Here from the flood of asynchronous 
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input spikes, a synchronized pattern of signals in the form of N-dimensional feature vector xin = x(d) is extracted 
by a dynamical spatiotemporal synchrony mechanism. Box 2 is an NN learned according to Equation 2 (or 
Equation 7 from Section 4.4) where each input, xin, is transformed into its corresponding output, xout. Diamond 3 
(a kind of comparator or familiarity/novelty detector) performs the comparison of xout, just now emerged, with the 
reference vector (trace) x0 from reference memory (RM, see below). If xout = x0, then the retrieval is successful and 
it is finished. In the opposite case, if current time of retrieval, t, is less than its given maximal value, t0, (this fact is 
checked in diamond 4) then the loop 1-2-3-4-1 is activated, retrieval starts again from box 1, and so forth. If t0, a 
parameter of time dependent neurons, was found as insufficient to retrieve x0 then diamond 5 examines whether 
an external reason exists to continue retrieval. If it is, then the loop 1-2-3-4-5-6-1 is activated, the count of time 
begins anew (box 6), and internal cycle 1-2-3-4-1 is repeated again with a given frequency f, or time period 1/f, 
while t < t0.  
The trace x0 is held simultaneously in a particular NN memory (box 2) and in its auxiliary reference memory (RM) 
that may be interpreted as a tag of corresponding NN memory or as a card in a long-term memory catalog. An 
RM performs two interconnected functions: verification of current memory retrieval results (diamond 3 serves as a 
comparator) and validation of the fact that a particular memory record actually exists in the long-term memory 
store (diamond 3 serves as a familiarity/novelty detector). Thus, specific RM is a part of memory about memory or 
'metamemory,' in other words. In contrast to the NN memory, which is a kind of computer register and is 
conventionally associated with a real biological network, particular RM is a kind of slot devoted to the comparison 
of a current vector xout with the reference pattern x0 and may be associated with a coincidence integrate-and-fire 
'grandmother' neuron (cf. Sections 3, 4.1, 5, and ref. 14).  
All elements of the internal feedback (reentry) loop, 1-2-3-4-1, run routinely in an automatic regime and for this 
reason they may be interpreted as related to an implicit (unconscious) memory. Consequently, under the 
NNAMM, all operations at synaptic and NN memory levels are unconscious. External feedback (reentry) loop, 1-
2-3-4-5-6-1, is activated in an unpredictable manner because it relies on external (environmental and, 
consequently, unpredictable) information and in this way provides unlimited diversity of possible memory retrieval 
modes. For this reason, an AMU can be viewed as a particular explicit (conscious) memory unit. An external 
information used in diamond 5 can be thought of as an explicit or conscious one. 
Recent evidences demonstrate that learning induces molecular changes in neocortex and hippocampus; this 
finding, along with based on it physiological theory assuming that any long-term memory record is stored in 
parallel in the neocortex and hippocampus [16], supports the NNAMM's idea of storing simultaneously each 
memory trace in an NN (a counterpart to a neocortex network) and in a 'grandmother' neuron (probably, a cell in 
hippocampal structures). This point of view is also consistent with the content of ref. 17,18 where a hippocampal 
comparator or familiarity/novelty detector is considered. For some other arguments in favor of the NNAMM's 
biological plausibility see ref. 4. 

4.3 AMU's Basic Performance  

The best data-decoding/memory-retrieval algorithms considered have common quality performance function, 
P(d,θ), the probability of correct decoding/retrieval or generalization, conditioned under the presence or absence 
of x0 in the data analyzed, as a function of d and θ (d  = 1 – q, all notations are as in Section 4.1). 
The finiteness of the set of vectors x(d) makes possible to find P(d,θ) by multiple computations [10]:  

          P(d,θ) = n(d,θ)/n(d)  (5) 

where n(d) is a given number of different inputs with a given value of d, xin = x(d); n(d,θ) is the number of those 
x(d) which are leading (under condition that for their decoding the NN algorithm with triggering threshold θ is 
applied) to the NN’s response xout = x0. For small N, P(d,θ) can be calculated exactly because the number of 
items in the complete set of x(d), n(d) = 2mCNm, is small and they the all can be taken into account. For large N, 
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P(d,θ) can be estimated by multiple computations approximately but, using a sufficiently large set of randomly 
chosen inputs x(d), with any given accuracy. 
For intact perfectly learned NNs, convolutional (Hamming) version of the BSDT/NNAMM formalism allows to 
derive an expression for P(d,θ) analytically [15]:  
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Here if kmax ≤ m then kmax = m else kmax = kmax0, Cmk denotes a binomial coefficient. 
Since θ (triggering threshold) and F (false-alarm probability), d (damage degree) and q (intensity of cue) are 
related (see details in ref. 12), functions P(d,θ) can, for example, be written as ROCs [receiver operating 
characteristic curves, Pq(F)], or BMPs [basic memory performance curves, PF(q)] [4].  

4.4 AMU's Learning  

Equation 2 defines perfect one-step learning from one example because in this case for the NN considered its 
input, x0, and its output, x0 (the label, 'teacher,' or 'supervisor'), are exactly known. But often unsupervised 
learning is also needed.  
Let us use the traditional delta learning rule in the form 

           )()()()1( n
i

n
j

n
ij

n
ij hvww  +=+ η   (7) 

where n and η > 0 are an iteration number and a learning parameter, respectively; vj = xjin; hi = ∑wikvk, k = 1,…,N. 
Here the training set consists of only one sample, xin = x0, and, consequently, Equation 7 describes learning from 
one example (such an iteration process does not feedback the NN's output xout to the NN's input; the current 
value of wij is estimated using its previous value, the values of η and components of x0).  
If η is small (η < 1) then the learning rate achieved is low and asymptotic values of wij are not reached. This case 
has no essential practical significance. If η is large (η > 100) then the iteration process leads to a fast, one-trial, 
without the 'catastrophic forgetting' learning because already the first iteration gives the result which is close to 
the asymptote and next iterations do not lead to the essential advance.  
Let us consider the NN with N = 40, continuous wij, vj, hi, xiin, xiout and all initial values of wij chosen randomly with 
uniform probability from the range [–1,1]. If the initial learning pattern is xin = x0 then after each next iteration an 
NN with the next version of its weight matrix wij provides the emergence of the next version of xout (the next 
approximation of x0). For example, for η = 400 already the first iteration gives the approximation's quality 
estimation ∑ |xiout – xi0| < 10–30 (i = 1,…,N) which is more than enough for practical purposes.  
Simultaneously with the NN itself, its specific reference memory (RM) should also be learned (for example, by 
direct recording the components of x0 into RM). 

5 Neuron RFs and NNs for Tuning  

Figure 3 illustrates the process of visual data processing using the NN described in Section 4.1 and AMU 
described in Section 4.2. A binarization algorithm (e.g., [5]) transforms vector y, a half-tone image, into spinlike 
vector xin without loss of information important for the following feature discrimination procedure (e.g., if yi > bdi 
then xiin = 1 else xiin = –1). It is supposed that binarization of components of y or h means spike generation; h may 
be interpreted as a simplified 1D profile of a 'grandmother' neuron's receptive field (RF) which results in the 
process of internal weighted network computations (Equation 3, see also ref.14). Profiles of such RFs can be as it 
is typical for on-cells (panels a, c, d) or for off-cells (panel b) and, as panels a and b demonstrate, noise xin = xr 
can initiate the reverse of the RF polarity (these predictions are consistent with current physiological results [19]). 
At a given level of data processing, the set of outputs of ‘grandmothers’ of different NNs (the top raw in Figure 3) 
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reduces the redundancy of initial data and can constitute an xin for NNs at the next level of data processing 
hierarchy; in particular, in AIT, an xin could already represent a face (Section 3).   
From the above consideration and example (Figure 3) follows that within the theory for vision proposed for image 
recognition at any level of data processing hierarchy, the NNs of the same structure are used [Equations 2-4, 
Figures 1 (the insertion) and 3]. These NNs perform a given normalization of a current input (Equation 3) and 
thresholding the result (Equation 4). The main distinction between them consists in the fact that they (and their 
'grandmothers') are learned ('tuned') to recognize different binary patterns x0 which, depending on the context, 
can code simple elements/features of a visual scene (e.g., oriented bars in V1) as well its rather complex objects 
or their parts (e.g., human faces in AIT). Tuning the NNs considered to recognize optimally (to respond preferably 
to) x0 is extremely simple because that is a one-step learning from one example, according to Equation 2 or 7. As 
NNs can generalize, they can recognize patterns x(d), which are x0 damaged by noise, and the more the d the 
smaller P(d,θ) is [d is a damage degree of x0, 0 ≤ d ≤ 1, x(0) = x0; P(d,θ) is the probability of recognizing x0 in 
x(d); how at θ = 0 P(d,θ) depends on d, one can see from examples in Figure 3 of ref. 4]. Thanks to this property 
of functions P(d,θ), the NN's tuning is 'bell-shaped' (at θ = 0, Figure 3 of ref. 4 displays examples of some 
possible bell-shaped profiles of tuning). Hence, the NN introduced may be interpreted as an universal circuit 
underlying bell-shaped tuning in different visual brain areas (here, it is important to note that because within our 
'grandmother' theory for vision each NN discussed is connected to its 'grandmother' neuron, the terms 'tuning the 
NN' and 'tuning the neuron' are synonymous). 
 

d)c)b)a)

θ = 4

+sd
bd
-sd

Initial data, y

NN layer 1
input/output, xin

NN layer 2
input,  h

NN layer 2
output, xout

'Grandmother'
output

 

 

 
Figure 3. Computer simulated samples of initial visual data, y (e.g., an electric output of light-sensitive retina 
cells), and their processing results, xin, h, xout, in four N-channel data processing windows (crosses are values of y 
in each channel). In panels a and b, y is a fixed background, bd, damaged by Poisson-like noise, bd = 100; in 
panels c and d, y is a Gaussian peak on the background, bd, their sum is damaged by Poisson-like noise, the 
peak's amplitude is a = 20, its full width at half maximum is fwhm = 5. Vectors y, x0 (boxed), xin, h (1D profile of an 
RF), and xout are N-dimensional ones, N = 9; positive and negative components of x0, xin, h, xout correspond to 
upward and downward bars, respectively; intact NN and its 'grandmother' hold x0 = (–1, –1, 1, 1, 1, 1, 1, –1, –1), a 
kernel for the convolutional decoding/retrieval algorithm (the neuron's triggering threshold is θ = 4); peak is 
identified in panel d; sd = bd1/2, standard deviation of bd.   
It is clear that the employment of NNs discussed for solving the problem of generalization may be considered as 
a kind of alternative to radial basic function approach (RBF), mentioned in Section 2. 
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6 Generalization by Computation through Memory Performance  

Since P(q,θ) defines (Equation 5) the fraction of vectors xin ≠ x0 leading, along with x0, to successful retrieval of 
the trace x0 from the learned NN (the insertion in Figure 1 and box 2 in Figure 2), the probability of memory 
retrieval, P(q,θ), and generalization ability by computation through memory, g(q,θ), are numerically equal, g(q,θ) = 
P(q,θ).   
 

Table 1 
Generalization ability, g(q,θ) = n(q,θ)/n(q), for an AMU storing the trace x0 = (–1, –1, 1, 1, 1, 1, 1, –1, –1)1. 

 
q Intact NN, g(q,6),%2 Damaged NN, g(q,0),%3 q Intact NN, g(q,6),% Damaged NN, g(q,0),% 

1 2 3 4 5 6 
0/9 
1/9 
2/9 
3/9 
4/9 

    10/512 = 1.953   
9/256 = 3.516 
8/128 = 6.250 
7/64 = 10.938 
6/32 = 18.750 

10/512 = 1.953 
81/2304 = 3.516 

288/4608 = 6.250 
588/5376 = 10.938 
756/4032 = 18.750 

5/9 
6/9 
7/9 
8/9 
9/9 

5/16 = 31.250 
4/8 = 50.000 
3/4 = 75.000 

2/2 = 100.000 
1/1 = 100.000 

630/2016 = 31.250 
336/672 = 50.000 
108/144 = 75.000 
18/18 = 100.000 

1/1 = 100.000 
1 q, intensity of cue (q = 1 – d = 1 – m/N, 0 ≤ m ≤ N, N = 9; q = 0, free recall; 0 < q < 1, cued recall; q = 1, 
recognition); θ, the neuron's triggering threshold; for definitions of n(q,θ) and n(q), see Section 4.3. 
2 Values of g(q,6) were calculated by Equations 5 and 6, results are equal. 
3 Values of g(q,0) were calculated by Equation 5; 30 disrupted interneuron connections (entrance-layer neuron, 
exit-layer neuron) are as follows: (2,1), (4,1), (5,1), (6,1), (8,1), (3,2), (5,2), (7,2), (1,3), (4,3), (5,3), (2,4), (4,4), 
(2,5), (3,5), (7,5), (9,5), (3,6), (7,6), (8,6), (9,6), (1,7), (2,7), (4,7), (8,7), (1,8), (5,8), (3,9), (6,9), (7,9); this set of 
disrupted connections was chosen to illustrate the fact that similar to intact NNs, damaged NNs can also provide 
the best decoding/retrieval/generalization performance (in columns 2 and 3, 5 and 6, generalization abilities 
coincide completely). 
In Table 1, generalization abilities for two AMUs, containing an intact and a damaged NN, are compared. In 
columns 2, 3, 5, and 6, values of g(q,θ) provide optimal (the best in the sense of pattern recall/recognition quality) 
generalization abilities; g(0,6) = g(0,0) ~ 1% was, for example, chosen as that is typical for professionals [5]. 
Usually, generalization is considered as a function of the relative size α = n/N of the training set of n examples 
and the learning strategy. For very large networks (N → ∞) and α >> 1, the error of generalization decreases as 
~ α–1 [20]; for small networks (for learning from few examples), the problem of generalization remains unsolved in 
theory [1]. The approach proposed in this work gives a solution of this problem because it makes possible 
learning even from one example (Section 4.4).  

7 Conclusion  

The first solution of the problem of generalization through memory has been proposed and illustrated by an 
original 'grandmother' theory for vision, here introduced using the recent neural network assembly memory 
model, NNAMM [4]. For the NNAMM's intact NN memory unit, analytical formulae and a numerical procedure are 
found to calculate exactly optimal values of generalization as a function of the cue index, q, and the neuron's 
triggering threshold, θ; for two specific NNs their generalization abilities are numerically calculated (it is important 
that in all calculations simple binary/digital mathematics is only used). It has been demonstrated that the 
approach proposed provides generalization for the case of learning even from one example and that binary NNs 
discussed can also be interpreted as universal circuits underlying bell-shaped tuning of neurons in different visual 
brain areas. 
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