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OPTIMAL CONTROL OF A SECOND ORDER PARABOLIC HEAT EQUATION 

Mahmoud Farag,  Mainouna Al-Manthari 

Abstract: In this paper, we are concerned with the optimal control boundary control of a second order parabolic 
heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit 
Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method 
(CGM) is applied to solve the distributed control problem. Numerical results are reported. 
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Introduction 
In the recent years, optimal control of systems governed by partial differential equations have been extensively 
studied. We refer for instance to [Lions, 1971], [Farag, 2004] for parabolic problems and to [Wu,2003], [Borzi, 
2002] for numerical studies. In this paper, we are concerned with the optimal control boundary control of a second 
order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with 
diagonally implicit Runge-Kutta method of order 2 in 2 stages is applied to solve the parabolic heat equation. The 
conjugate gradient method (CGM ) is applied to solve the distributed control problem. Numerical results are 
reported. 
Consider the second order heat equation  

)T,(x)l,()t,x(,)t,x(u
x

)t,x(ya
t

)t,x(y)( 00Ω1 2

2
2 =∈+

∂
∂

=
∂

∂  where )t,x(y  is the 

temperature at time t  and at a point x  and )t,x(u  is a distributed control. 
The initial and boundary conditions are given by 
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a boundary control. 
The problem is to find control functions )t,x(u  and )t(g  that minimize the cost functional  
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where Φ  is continuously differentiable with respect to its argument. 

DIRK Method  
In this section we present some basic results about the Runge-Kutta methods, the diagonally implicit Runge-Kutta 
method of order 2 in 2 stages (DIRK). The reader is referred to [Alexander, 1977], [Shamardan, 1998]. 
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In [Alexander, 1977], he has given the A-stable DIRK methods of maximum order in two stages and derived new 
methods with stronger stability properties, from this work one can extract the following theorem. 
 

Theorem 1: There are exactly two strongly s-stable DIRK formulae of order two in two stages and exactly are 
strongly s-stable DIRK formulae of order three in three stages. They are  
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In [Shamardan, 1998], we presented the numerical solution of the linear equation  
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using DIRKB (Diagonally Implicit Runge-Kutta Backword Method), DIRKC (Diagonally Implicit Runge-Kutta 
Central Method ), DIRKF (Diagonally Implicit Runge-Kutta Forward Method ) and given the following figures.  
In the figures (1.a),(1.b),(1.c), (2.a),(2.b),(2.c) the wave rapidly decreases as there is no shock wave but in the 
figures (3.a),(3.b),(3.c), (4.a),(4.b),(4.c) there is a medium boundary region near x=1. 
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Differentiation of the Cost Functional  
For given control functions )t,x(u  and )t(g , we solve equation (1) with conditions (2), (3), and then substitute 
this solution into (4) to evaluate J . This value is a composite function of )t,x(u  and )t(g . Denote it by )g,u(Θ . 
Since the optimal control cannot be obtained as an analytic solution of the necessary and sufficient optimality 
conditions, we attempt to find it numerically by minimizing )g,u(Θ  via a gradient algorithm. We are thus faced 
with computing the gradient of the cost functional [Evtushenko, 1997]. The problem is discredited by a finite 
difference approximation scheme. We use a uniform grid denote  
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Using an explicit forward Euler scheme in time, then the cost functional and the system (1)-(3) are replaced by  
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where iα  are the quadrature coefficients, 
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We introduce the adjoint variables j
iΨ  and the auxiliary function 
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Appling {formula 11, in [Evtushenko, 1997]}, we obtain 
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Then using {formula 12, in [Evtushenko, 1997]}, we obtain  
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If we let 0Δ0Δ →→∞→ t,x,k , then in both cases we find that the function satisfies the following 
conditions: 
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The gradients of the cost functional for the continuous problem are given by 
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Solution Algorithm 
With the gradient obtained, the following gradient type algorithm [Farag, 2003] can then be developed for the 
optimal values of ** g,u based on the conjugate gradient method (CGM). The direct and adjoint systems are 
converted to ordinary differential equations and solving by DIRK method. The outlined of the algorithm for solving 
control problem are as follows: 

Step 1: Choose an initial guess U)t(g),t,x(u )n()n( ∈ . 

Step 2: Solve the direct problem to obtain )g,u,t,x(y )n()n( . 
Step 3: Solve the adjoint problem to find the gradient of the cost functional 
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Step 4: Compute the conjugate coefficient by: 
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Step 5 : Calculate the direction of descent :  
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Step 6: Test the optimality of )n()n( g,u 11 ++ . 

If )n()n( g,u 11 ++  are optimum, stop the process. Otherwise, go to Step 7. 

Step 7: Set 111 +=== ++ nn,gg,uu )n()n()n()n(  and go to Step 2. 

 

Numerical Example 

Let us present a numerical example. The programs were written in FORTRAN. We choose  
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In Figure 3.1 the bold curve is the exact optimal boundary control and the other curves are the values of optimal 
control )t(g  via iterations. In figure 3.2  )t,x(u  is plotted for the approximation optimal control of the control 
problem. Figure 3.3 shows the values of cost functional via iterations. 

 

 

Figure 3.1 The optimal boundary Control via iterations 
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Figure 3.2 The exact optimal control  
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Figure 3.3 The approximation optimal control 
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Figure  3.3  The Value of Cost functional 
for different iterations
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Conclusion 
Optimal control problems for partial differential equations are currently of much interest. A large amount of the 
theoretical concept which governed by quasilinear parabolic equations has been investigated in the field of 
optimal control problems. These problems have dealt with the processes of hydro- and gas dynamics, heat 
physics, filtration, the physics of plasma and others. In this paper; we are concerned with the optimal control 
boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial 
central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat 
equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical 
results are reported. 
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THE MATRIX METHOD OF DETERMINING THE FAULT TOLERANCE DEGREE 
OF A COMPUTER NETWORK TOPOLOGY 

Sergey Krivoi,  Miroslaw Hajder,  Pawel Dymora, Miroslaw Mazurek 

Abstract: This work presents a theoretical-graph method of determining the fault tolerance degree of the 
computer network interconnections and nodes. Experimental results received from simulations of this method 
over a distributed computing network environment are also presented. 

Keywords: computer network, fault tolerance, coherent graph, regular graph, network topology, adjacency 
matrix. 

ACM Classification Keywords:  C.2.1 Network Architecture and Design - network topology, F.2.1 Numerical 
Algorithms and Problems - matrix methods, B.8.1 Reliability, Testing, and Fault-Tolerance - fault tolerance degree 

Introduction 
Computer networks plays an extremely important role in today’s information technologies, because by its means 
it’s possible to accelerate processes like i.e. transmission, processing and storage of information in computer 
systems. In such a process the most crucial issues are related with protecting a correct work of a computer 
network and its interconnection and node fault tolerance. The solution of these problems is related with examining 
the network topological characteristics and its topological structures. In this work the theoretical-graph method of 
determining the computer network topology critical points which refers to computer network interconnections and 
nodes failures is proposed. 


