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ONE CLASS OF STOCHASTIC LOCAL SEARCH ALGORITHMS 

Leonid Hulianytskyi, Alexander Turchin 

Abstract: Accelerated probabilistic modeling algorithms, presenting stochastic local search (SLS) technique, are 
considered. General algorithm scheme and specific combinatorial optimization method, using “golden section” 
rule (GS-method), are given. Convergence rates using Markov chains are received. An overview of current 
combinatorial optimization techniques is presented. 

Keywords: combinatorial optimization, stochastic local search, simulated annealing, Markov chains 

Introduction  
Approximate algorithms are well-known to solve different combinatorial problems. This based on some facts: 
firstly, mostly each problem is NP-hard; secondly, result functions have lots of local extremes; and finally, real 
data often are given with some inaccuracy and this makes serious calculations unnecessary. Also, it must be 
noticed that key ideas of these algorithms (metaheuristics) allow us to design algorithms, which can solve not one 
but some classes of optimization problems.  
The most known definition of combinatorial optimization problem (according to Papadimitriou and Steiglitz [1,2]) is 
following: find x* ∈ X 
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*

x D X
x arg min f ( x )

∈ ⊆
= , (1) 

where X – finite (or possibly countably infinite) solution space, D – subspace defined by problem constraints,  
f: X→R1 – objective function.   
This definition works perfectly on finite sets, but in case of infinite sets some classification problems nay appear – 
classification according to structure of solution space may be difficult. To get over these complications, Berge [3] 
introduced combinatorial configuration. Let m,n – natural numbers, U={1, … , m}, V={v1, … , vn } – some sets, and 
some order is given for V: v1 <… < vn (in other words, V is a chain).  
Definition 1. Combinatorial configuration is a reflection :U Vϕ → , satisfying some contingencies Λ. 
From this definition, if m,n – some fixed numbers, the number of combinatorial configurations is finite. Usage of 
contingencies Λ allows describing different combinatorial configurations.  
Berge’s definition can be generalized as follows: Let Y={1, … , m}, Z – some discrete (may be finite) space called 
“forming space”, ϕ – homomorphism, :Y Zϕ → , satisfying some contingencies system Ω. It must be noted, 
that discrete space is the space of isolated points. 
Definition 2. Combinatorial object is ( , , )Xκ ϕ= Ω% , where X%  - basic space. 
Definition 3. 1st order combinatorial object is such combinatorial object, where basic space is the forming space: 

 
(1)( , , )Xκ ϕ= Ω ,  

Here (1)X Z≡ . It is easy to see that in case of finite Z these combinatorial objects are the same with Berge’s 
combinatorial configurations [3]. 
Definition 4. k-order combinatorial object is such combinatorial object that: 

 
( )( , , )kXκ ϕ= Ω ,  

where ( ) ( 1) .k
k kX X X−⊆ ∪  

 
After everything stated above, another definition of optimization problem (1) can be stated as follows:  
Definition 5. Optimization problem (1) will be combinatorial optimization problem (COP), if solution space X is the 
space of combinatorial objects.  
Also, it must be noted that received results are valid for the case of discrete countable X.  
Simulated Annealing (SA) method is well-known effective search technique solving COP [2]. SA algorithms allow 
finding high accuracy results and can be easily realized on multi-processor systems. 
Transaction probability in SA scheme depends on result function changes and realized with parameter T 
(temperature). Probabilistic transactions (temperature schedule) in neighborhoods of worse solutions should 
decrease with the number of iterations and should tent to zero. Changes of parameter T are stated with 
equilibrium conditions. Such probabilistic mechanism is a key feature of SA scheme and allows avoiding local 
extremes during first iterations and concentrates on global extremes in time.  
At the same time, different researches showed great dependence of received solutions from values of 
parameters. This fact leads to necessity of probabilistic mechanism generalization. As a result, a new class of 
accelerated probabilistic modeling algorithms (also called G-algorithms) was introduced [4], and among them –
algorithm with specific probabilistic transaction scheme [5]. 

G-algorithms 
The scheme of accelerated probabilistic modeling algorithms concludes one key idea: algorithm build next 
element from current solution neighborhood, and if result function of this element is better – we accept it as 
updated current solution, if result function is worse – element can be accepted with some probability. But, unlike 
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SA, in G-algorithm these “thresholds” are calculated in similar way during entire computational process, but 
algorithm changes the parameter that defines elimination of worse solution. 
To build G-algorithm, we should define { }tμ , 0 10 ... 1μ μ≤ < < ≤  – some strictly monotonous sequence of 
real numbers, that can be describe as similarity of temperature schedule in SA. If xh is a current solution on 
iteration h, and ( )L x  is a neighborhood of x X∈ , then next element ( )hy L x∈  with f(y) > f(xh) (in case of 
minimization problem) can be accepted as xh+1 with some probability p(xh,y), that depends on current value of 

tμ . 

Let F(x,y), 0≤ F(x,y) ≤1– some functional dependent on result function. Transaction probability from x to y 
(x,y∈X) can be defined in the next way: 

 ( , ) (1 ) ( , )tp p x y F x yμ≡ = − ⋅   
The general scheme of G-algorithms presented on Picture 1. 
 

procedure  G_Search(x) 
begin 
       x0 := some initial solution from Х; 
       

0μ : = 0;  h := 0;  t : = 0; 

       xrec:= x0;  frec := f(x0); 
       while neighborhood of current solution ( )hL x is not checked totally do 
           begin 
               while equilibrium condition is not met  do 
                  begin 
                       у := GenerateNextNeighbor ( )hL x ; 

                       Calculate ( , )hF x y ; 

                       p := (1– tμ ) ( , )hF x y ; 

                       ξ  := random[0,1]; 
                       if  p ≥ ξ  then   
h:=h+1;  xh := y;   
if  frec > f(xh)  then  
    xrec := xh;  frec := f (xh) 
end if 
                                    end if; 
                  end; 

                CalculateNextValue 1+tμ ; 

                t := t + 1; 
            end; 
          return   x= xrec; 
  end 

Picture 1. Accelerated probabilistic modeling algorithm (G-algorithm) 
 
Here random[0,1] – random generator of values from [0,1].  
To build G-algorithm, these elements must be defined: 

 functional F(x,y); 
 {μt} building mechanism; 
 equilibrium conditions; 
 stopping rule. 

Functional F(x,y) must use monotonous by result function consequences, that met such conditions: 
а) F(x,y)→1, if f(y)→f(x). 
b) F(x,y)→0, if f(y)→∞. 

For example, next functional can be used as F (x,y): 
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 ( ) , ( ) ( ),( , ) ( )
1, .

f x if f y f xF x y f y
otherwise

β⎧⎡ ⎤
≥⎪⎢ ⎥= ⎨⎣ ⎦

⎪
⎩

  

where β > 0 – some real, or natural number particularly. 
Usually, it is easy to find the upper bound of result function fmax in terms of some COP, because of finite X: 

max( ) , .f x f x X≤ ∀ ∈ In this case functional may be as follows: 
 

max

( ) ( )( , ) 1
( )

f y f xF x y
f f x

β
⎡ ⎤−

= − ⎢ ⎥−⎣ ⎦
.  

In general case, common G-algorithm uses next piecewise linear functional [5]: 
 ( ) ( )min{1,1 }, ( ) ( ),

( )( , )
0, ( ) ( ),

f y f x if f y f x
f xF x y

if f y f x
γ
−⎧ − ≥⎪= ⎨

⎪ <⎩

  

where parameter , 0γ γ >  is a real number. 

In this case, for current solution xh transaction probability p(xh,y) from xh to ( )hy L x∈  represented with 
piecewise linear functional, that consists from three main parts: it is 1 if f(y) < f(xh), it decreases from 1 to 0 if f(xh) 
≤ f(y) ≤(1+ γ ) f(xh), and it is 0 when f(y) > (1+ γ ) f(xh). This can be illustrated in next way (Picture 2). 
 
p 
 
 
1 
 
 
 
0                                             f (xh)                                            (1+γ) f (xh)                                   f(y) 
 
                                                                         γ f (xh) 

Picture 2. Transaction probability in the neighborhood 
 
Thus, parameter γ  defines the middle interval γ . f(xh), and if f(y) gets into this interval, y may be chosen as 
updated solution xh+1. This means that in case of essentially worse f(y) the next neighborhood element y will be 
far away from acceptance. Also, it should be noted that the length of interval decreases if f(xh) gets closer to 
global optimum, and increases otherwise.  
Moreover, usage of relative values allows avoiding the dependence from absolute values. Thereby, 
computational process adapts to dynamics of result function changes.  
There are two main approaches to build consequence {μt}: using some strictly monotonous function called “G-
function” (that is why algorithms are called G-glgorithms [4,5]), and using “golden section” rule [6].  
Let G: [0,1] → [0,1] – some strictly monotonous function, then μt+1 = G(μt). In common cases,  
G-functions are like this example: 

 1/( ) min{1, ( ) }, 0.k k
kG x x H x= + ≥  (2) 

where k ∈{1, 2, 3}, а Н, 0 < H < 1 – some small value defining the convergence rate Gk (x)→1 if х→1. 
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Otherwise, values μt may be calculated through division of [0,1] interval with some step and sequential selection 
of constructed points. Apparently, when consequence reaches 1, proposed algorithm will work like common 
determinate local search algorithm.  
Usage of “golden section” rule became an effective approach to build algorithms for COP with  
1-argument continuous result function. In this case μt is the left “golden section” point of [μt-1,1]; μ0 =0, and 
μt+1=G(ut). Thus, “golden section” rule defines the speed of left border approaching to 1, and corresponding μt are 
the arguments for G(x) (for example (2)). Algorithm using “golden section” rule is called GS-algorithm.  
Setting up the equilibrium condition may be effective with usage of SA experience, and analogy of “temperature” 
in SA and μ, in G-algorithms. Particularly, possible equilibrium condition can be defined as follows: let ν  is some 
natural number and ε > 0 is real; and realization of ν  transactions is called a “run” [7]. If, for current temperature 
algorithm made k runs and some consequence f1,...,fk is received, equilibrium condition is met if  

 | fk+1 – fi |≤ ε   
for some i ∈ {1,..., k}. In this case fi may be the average result function value or the best one, received on current 
run.  
Algorithm stops when stopping rule is met. This can be: total check of neighborhood with no transactions done, 
algorithm computational time limitations, reaching some denoted solution accuracy (in case of known fesult 
function lower bound) etc. Also, another possible stopping rule may base on comparison of min and max result 
function values – and min and max result function values with some value of μ: if this correspondence tends to 1, 
algorithm stops.  
In case of some contingencies computational scheme of G-algorithms can easy take these contingencies into 
account when next point of neighborhood is generated. This approach allows solving some COP classes, and its 
contingencies can be changed even during algorithm work. 
Similarly to Iterated Local Search (ILS) [2], after finishing general GS-algorithm work the received solution can be 
modified and used as initial solution for built-in GA-algorithm. In other words, we get some metaheuristic method 
that can be called “Iterated GS-algorithm”. 

Convergence analysis 
Convergence analysis will be made on essential class of COP – permutation tasks with transposition metric. Let 

),( HVGr =  will be the complete weighted graph with { }1,...,V n=  - set of nods and H - set of ribs. The 
path between two point from solution space X means the consequence of ribs: each nod relevant to Xx∈ , will 
be connected with nods relevant to ( )L x  neighborhood elements. Let’s consider neighborhoods of minimal 
radius 1: 1( ) ( )L x L x= . The correspondence between neighborhood ( )L x and set VvvN ∈),(  will be built 
upon next rule: if two point in space X differs with one transposition, their nods-images on graph Gr  will be 
connected with a rib.  
The search process in this case will be imitated with transactions on graph Gr . The degree d of graph is 

2
)1( −

=
nnd , and diameter 1−= nD .  

Search process in this case is being modeling with Markov chain because next state depends only on current 
state. GS-algorithm convergence if corresponding Markov chain will have at least one value corresponding to 
global optimum.  

Transaction probability is limited above with value sμ . Let ∏
=

−

=⎟
⎠
⎞

⎜
⎝
⎛=

D

i

i
D

d
d

1

ˆ,1ˆ μμ . 

Lemma. Let Vv∈  - some nod corresponding to some x from solution space. Then expected number of steps to 

reach the nod, corresponding to the global optimum, not more than
μ̂
d̂ . 
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Proof. Let x  – global optimum of COP (1), and let nod v  in graph ),( HVGr =  corresponds to x . There is a 
path from v  to v  with length Dq < . In other words, there is a consequence of nods qvvv ,..., 21 . 

If each element of neighborhood can be selected for checking with the same probability, transaction probability of 

visiting v  in q steps will be at least ∏
=

×⎟
⎠
⎞

⎜
⎝
⎛ q

i

i
q

d 1

1 μ , and will be valid 

 

ddd

D

i

i
Dq

i

i
q

ˆ
ˆ11

11

μμμ =⎟
⎠
⎞

⎜
⎝
⎛≥×⎟

⎠
⎞

⎜
⎝
⎛ ∏∏

==

.  

Therefore, probability of visiting v  starting from some v  will be at least 
d̂
μ̂ . This means that expected number of 

algorithm steps to reach global optimum will be not more than 
μ̂
d̂ . 

Lemma is proved. 

Theorem. GS-algorithm convergence to the global optimum with probability more than )11( kC
−  during the 

number of steps not more than 
μ̂
d̂Ck ⋅  and this estimation does not depends on initial solution ( 1>= constC ). 

Proof. Mathematical induction approach will be used. Let ⎥⎦

⎤
⎢⎣

⎡=
d

CQ ˆ
μ̂ , and let’s prove that probability of missing 

nod v  in kQ  steps is not more than 1/C k. 
For basic case 1=k  and some initial state x, according to the Lemma the expected number of steps to reach v  

is not more than 
μ̂
d̂ . From Markov’s inequality 

 

CdC

d

Q

dM
Qdp 1

ˆ

ˆ
ˆ

ˆ
)

ˆ

ˆ
(

)
ˆ

ˆ
( ===>

μ

μμ
μ

.  

Let’s estimate that theorem is valid for all 1−≤ Kk  and prove it for Kk = . Let QKQQ xxx )1(2 ,..., −  - 
Markov chain built on steps QKQQ )1(,...,2, −  correspondently. Consider two events: 

 Event H1: nod v  is not reached during first Q steps; 
 Event H2: nod v  is not reached during next QK )1( −  steps; 

 
According to these events, probability to miss v  during KM  steps is ( ) )1(1|2 HPHHpp ×= . From Markov 
chain theory, the probability to reach global optimum during some number of steps depends on this number of 
steps and does not depends on states visited previously. Using this fact, probability )1|2( HHP  depends on 
state on iteration Q  and QK )1( −  steps: 

 ∑
∈

=×==
Vi

QQ ixPixHPHPP )()|2()1( .  
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Probability )1(HP  is not more than 
C
1  according to the basic case, probability )|2( ixHP Q = is not more 

than 1
1
−KC

 for each Vi∈  according to the estimation. Finally: 

 
KK CCC

P 111
1 =×≤
−

.  

Probability to reach global optimum is opposite to miss it. Therefore, with probability more than )11( kC
−  will be 

reached during the number of steps not more than 
μ̂
d̂Ck ⋅ , and this estimation does not depends on initial 

solution. 
Theorem is proved. 
Corollary. If ∞→k , there is probability convergence of received solutions consequence to the global optimum. 
This fact is obvious according to the probability convergence definition. 
The key idea of received convergence rates is in generalization of rates received previously for SA [8].  
Also, received convergence rates can be used in convergence analysis of other accelerated probabilistic 
modeling algorithms and other similar search techniques.  

Practical application 
Proposed combinatorial optimization algorithms can be applied to solve different classes of problems because of 
its general requests for problem formulation. The complex analysis of algorithms solving popular COP (like TSP 
and QAP), alongside with specific problems (like location problem, warehousing problem etc) was made.  
TSP was the very first application of G-algorithms because this problem is a well-known proving ground for new 
algorithms construction. Paper [9] presents some received results, and these results congruent with best known 
solutions received on supercomputing systems. Also, some essential experience in combining algorithms 
construction (based on genetic algorithm and G-algorithm hybridization) was accumulated.  
QAP (Quadratic Assignment Problem) is also very popular in different branches like economics, production 
planning etc. Despite of the fact that this problems is well-known and been solved during years, it is hard to find 
the exact solution for problems with dimension n > 15-20, and even ε-close solution finding is NP-hard problem 
[1]. Performed results allowed choosing most effective calculation schemes, whose were used to build different 
algorithms like GS-algorithm (using “golden section” rule) and metaheuristics used for TSP and QAP solving [5,9].  
In paper [10] some specific problem of optimal cutting was presented. This is a problem of optimal bar layout on 
semi-infinite tape, when bars have same height and different width. Some algorithms based on local optimization 
schemes, SA and G-algorithms were proposed. Received results proved that G-algorithm performed better 
results comparing with other algorithms. 
The warehousing problem is a very important strategic problem in case of different types of products and 
forecasts about possible needs [11]. Presented G-algorithm was compared with three LS and SA algorithms. 
Received results showed that G-algorithm can find high accuracy solutions in less time than other rivals.  
Problem of optimal network channel capacity is one of the most important problems in telecommunication 
network construction with ATM technology. In this case network consists of commutators connected with fixed 
length network channels. Some requirements about information traffic are given for each pair of commutators, 
and general information flows are given for each channel. Network channel capacity for some channel depends 
on basic channel capacity. Problem is to find such number of basic channels that the cost of network will be the 
smallest and some requirements about service quality will be met. Some algorithms presenting Local Search, 
Iterated Local Search, Simulated Annealing, G-algorithms and Genetic Algorithms were developed. Practical 
application showed that for different traffic types best solutions in most cases were found be G-algorithm and ILS 
[12]. 
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Conclusion 
Some SLS algorithms are presented in this paper, alongside with own modification called GS-Algorithm, using 
“golden section” rule. The combination of probabilistic calculation mechanisms with LS procedure allowed 
successfully solve different classes of combinatorial optimization problems. An upper bound of global optimum 
convergence rate is received with usage of Markov chain theory.  
Some examples of algorithm applications for some COP classes solving are given. According to received results, 
proposed algorithm can be used for applied problems solving allow and used as built-in procedure in 
metaheuristics (first of all, population-based metaheuristics [2]). 
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