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A NEW APPROACH FOR ELIMINATING THE SPURIOUS STATES  
IN RECURRENT NEURAL NETWORKS 

Víctor Giménez-Martínez,  Carmen Torres,   
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Abstract: As is well known, the Convergence Theorem for the Recurrent Neural Networks, is based in 
Lyapunov´s second method, which states that associated to any one given net state, there always exist a real 
number, in other words an element of the one dimensional Euclidean Space R, in such a way that when the state 
of the net changes then its associated real number decreases. In this paper we will introduce the two dimensional 
Euclidean space R2, as the space associated to the net, and we will define a pair of real numbers ( ),x y , 
associated to any one given state of the net. We will prove that when the net change its state, then the product 
x y⋅  will decrease. All the states whose projection over the energy field are placed on the same hyperbolic 
surface, will be considered as points with the same energy level. On the other hand we will prove that if the states 
are classified attended to their distances to the zero vector, only one pattern in each one of the different classes 
may be at the same energy level. The retrieving procedure is analyzed trough the projection of the states on that 
plane. The geometrical properties of the synaptic matrix W  may be used for classifying the n-dimensional state-
vector space in n classes. A pattern to be recognized is seen as a point belonging to one of these classes, and 
depending on the class the pattern to be retrieved belongs, different weight parameters are used. The capacity of 
the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, 
together with the formal theory, an application is presented  

Keywords: Learning Systems, Pattern Recognition, Graph Theory, Image Processing, Recurrent Neural 
Networks. 
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1. Introduction 
The problem to be considered when Recurrent Neural Networks (RNN) are going to be used as Pattern 
Recognition systems, is how to impose prescribed prototype vectors ,..., ,, p21 ξξξ of the space { }n1,1− , as 

fixed points. In the classical approach, the synaptic matrix ( )ijW w=  should be interpreted as a sort of sign 
correlation matrix of the prototypes. The element ijw W∈ , is going to represent some kind of relation between 
coincidences and not coincidences on the list of the components " "i and " "j  for all the prototype vectors 

1 2, ,  ..., .pξ ξ ξ  The classical solution to impose fixed points by means of the synaptic matrix W  is the Hebb´s 
law, which states that the synaptic weight ijw  should increase whenever neurons " "i  and " "j  have 
simultaneously the same activity level and it should decrease in the opposite case. As it was pointed out above, 
the prototype vector components must belong to the set { }1,1− ; this fact is the cornerstone of the Hebb´s law 
mathematical interpretation. The reason is that when the prototype μξ  is stored, neurons " "i  and " "j  may 
receive a similar sign or not”. The mathematical advantage of this interpretation lies in the fact that when the 
prototype μξ  is acquired, the synaptic weight ijw  should increase if neurons " "i  and " "j  receive a similar 

sign: in other words if μμ ξξ ji  .  is positive. On the other hand ijw  should decrease if μμ ξξ ji  .  is negative. The 
updating of the weights may be then expressed by, . ij i jw μ μξ ξΔ = , in other words, when the sign 
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of the components " "i  and " "j  in the prototype μξ  are with similar sign, the weight ijw  is positively reinforce, 
otherwise do the same but in a negative sense. In general a positive learning parameter η  may be used, and it 
can be state as the general training rule that the prototype μξ  is stored then μμ ξξηΔ jiij  . . w =  (being η  a 

positive learning factor); which means that, { }ijw ,Δ η η∈ − . The synaptic matrix W  should be interpreted as 
a sort of sign correlation matrix of the prototypes. 
 

2. Training: Parameters of the Net 

In our approach, instead of a matrix for storing the weights, a weight vector ( )1 2, ,..., np p p p=
ur

 is going to be 
introduced. At the beginning ( ), ,...,p 0 0 0=

ur
. At time t , when the training pattern μξ  is acquired, the weight 

vector p
ur

, will be updated by this very simple rule: 

p p μξ= +
ur ur

 
which means that, , ,..,i j 1 n∀ =    then , 
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It is clear that in this way training is faster than in the classical procedure, and the knowledge stored in the net 
parameter is equivalent. The synaptic matrix ( )ijW w= , may be rebuilt by doing,  

ij i jw p p= + , , ,..,i j 1 n∀ =  

Which is equivalent to state that when the prototype μξ  is acquired, the synaptic weight ijw  should increase if 
neurons " "i  and " "j  are in state 1 , and will decrease if neurons " "i  and " "j  are in state 1− . We may then 
consider that with this procedure, instead of storing some kind of sign correlation of the prototypes, like in the 
classical procedure was done, we are storing the correlation prototypes features. This method has also a very 
good property, and this is that, for any { }, , , ,..,i j r s 1 n∈ , then as, 

 i j r s i s r jp p p p p p p p+ + + = + + +  

one has that 
+ i rs is rjjw w w w= +  

So, as the way the parameters are stores is related with the features of the pattern components, we are going to 
use in our approach the Boolean space { }n0,1 instead of the bimodal space { }n1,1− . The training procedure 
will be then defines by 

⎪
⎪
⎩

⎪
⎪
⎨

⎧
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≠=ξ=ξ+

=Δ μμ
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w ji
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Two important advantages may be extracted from the above approach. The first advantage is that the space 
required for storing the parameters is lesser than in the classical one: the parameters may be stored in the weight 
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vector, and then doing ij i jw p p= + , to span it to the weight matrix if necessary. The second advantage is that 
the training may be much more easily understood using the next graphical interpretation of the training algorithm: 
A n  complete graph G  may be introduced associated with the net. At the first step, a null value is assigned to all 
the edges ija , then, when a learning pattern μξ  is acquired by the net, it is superposed over the graph G . The 

components, },...,{ n1
μμ ξξ , are going to be mapped over the vertices }v,...,v{ n1  of G . This mapping may be 

interpreted as a coloring of the edges in G , in such a way that, if 1ji == μμ ξξ , the edge ija  (whose ending 

vertices are iv  and jv ) will be colored with a certain color, for example red. On the other hand, if 0ji == μμ ξξ , 
then ija  will be colored with a different color, as for example blue. The rest of the edges in G  remain uncolored. 
Once this coloring has been done, the value assigned over the, also complete, graph of red edges are positively 
reinforced and the value assigned over the edges of the blue graph are negatively reinforced. The value over the 
rest of the edges remains unchanged. Once the pattern μξ  is acquired, the colors are erased and we repeat the 
same color assignation with the next pattern to be acquired by the net, and so on. When every vector in the 
training pattern set has been integrated in the net, the training stage is finished, the resulting graph G  has 
become edge-valued and its weight matrix is the synaptic matrix ( )ijW w=  of the net. Now if we define the basic 

matrix )u(U k
ij

k = , where 

( )   if      xor    
   otherwise

ij

ij

u 1 i k j k
u 0

⎧ = = =⎪
⎨ =⎪⎩

 

then, any synaptic matrix W  is generated by the set of basic matrices { }, ,...,1 2 nU U U . In other words,  

n
n

1
1 U.p...U.pW ++= . 

3. Recall 
For recalling a pattern from the net, the net should be colored with the color associated with that pattern, which 
may be interpreted as if the net had in a certain state ( )x t . Then, it is clear that, we may define the energy pair 
number ( ) ( ){ },I t O t , where 

( ) ( )( ) .  . ( )t1I t x t W x t
2

=  

represents the sum of the values of all the parameters ijw , associated with all the edges colored in red, and if 

( )x t  is the symmetric vector of ( )x t , then  

( ) ( )( ) .  . ( )t1O t x t W x t
2

=  

represents the sum of the values of all the parameters ijw , associated with all the edges colored in blue. Taking 
now into account that 

...1 n
1 nW p U p U= ⋅ + + ⋅  

one has that 
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In other words, if , ,..,i j 1 n∀ = , we do  
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but if 1n  is the number of unit components of ( )x t  and if 0n  is the number of the null ones (in other words 1n  is 
the Hamming distance from ( )x t  to the zero vector), it is obvious that 

      ( )       ( )
( )  ,     and      ( )

             ( )              ( )
1 i 0 i

i i
i i

n 1 if x t 1 n 1 if x t 0
I t O t

0 if x t 0 0 if x t 1
− = − =⎧ ⎧

= =⎨ ⎨= =⎩ ⎩
 

So, if 
1n21 i,i,i  ...,  , and 

0n21 j,j,j  ..., are the places where the unit and null components of ( )x t , are 
respectively located, the above equations could be written as 

( ) ( )( .... )
1 2 n11 i i iI t n 1 p p p= − + + +  and ( ) ( )( .... )

1 2 no0 j j jO t n 1 p p p= − + + +  

which means that 
( ) ( )

1 0

I t O t k
n 1 n 1

+ =
− −

 (where 1    ...   nk p p= + + ). 

In other words: all states ( )x t  sharing the same distance " "j  (where { }, ,...,j 1 2 n∈ ), will verify the before 
equation. The states' space could be then classified in the n  classes [ ] [ ] [ ] [ ], ,..., ,...,1 2 j n . If the pair 

( ) ( ){ },I t O t , where defined as the energy pair (PE), associated to ( )x t , one could state that all the states in 
the same class, has theirs PE´s in the same energy line. On the other hand, we may define the relative weight of 
the neuron " "i  when the net is in state ( )x t , as the contribution of this neuron to the component ( )I t , 
if ( )ix t 1= ; or as the contribution of this neuron to the component ( )O t , if ( )ix t 0= . So, if ( )ix t 1= , we 
define the relative weight ( )iw t of the neuron " "i  when the net is in state x(t) as: 
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and taking into account that, 
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and 
( ) ( ) . ( )1I t n 1 p x t= − ⋅  

( )iw t  may be represented as 
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and without difficult it could be also proved that if ( )ix t 0= , then 
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( ) .
. ( )

0 i
i

0 0

n 2 p1w t
n 1 n 1 p x t

−
= +

− −
 

4. Dynamic Equation  

If in time t  the state vector ( )x t  is in class [ ]j , then for any i  from 1  to n , the dynamic equation is defined as 
( ) ( )[ ] - )t(w . )t(x(f f)1t(x jiibhi θ=+  

where hf  is the Heaviside step function and bf  is the function defined as ( )bf x 2 x 1= ⋅ − , which achieves the 
transformation from the domain { },0 1  to the domain { },1 1− . In other words: if ( )x t  is in class [ ]j  and 

( )ix t 1=  the above expression could be written as 

( )j( ) ( )i h ix t 1 f w t θ+ = −  

which states that if ( )i jw t θ< , then ( )ix t  changes its state from state ( )ix t 1=  to ( )ix t 0= ; and otherwise 

( )ix t  doesn’t change its state. On the other hand, if ( )x t  is in class [ ]j  and ( )ix t 0= , the above expression 
could be written as 

( ) )t(wf)1t(x ijhi −=+ θ  

which states that if ( )i jw t θ< , then ( )ix t changes its state from state ( )ix t 0=  to ( )ix t 1= ; and otherwise 

( )ix t  doesn’t change its state. The value of jθ  is the j-th component of a n-dimensional vector θ  and is related 
with the class [ ]j  to which the state ( )x t  belongs, and must not to be interpreted as a threshold for the " "i  unit 
(which will be assumed to be zero, whenever this hypothesis is not critical for the results we will to establish). It is 
clear that the lower we set the value of jθ , the more states in class [ ]j  will have theirs relatives weights greater 
than jθ  which means that more fixed points the class [ ]j  will have. The desirable values for the, so to be called, 

capacity vector parameter ( )  =  ,....,   1 nθ θ θ , may be obtained in an adaptive way. It can also be stated that 
the sum of the relative weights ( )iw t for the unit components of ( )x t  is equal to 2 . The same could be proved 
for the null components. We have then that the relative weight vector ( ) ( ) ( ) ( )( ), ,...,1 2 nw t w t w t w t=  
associated to any state vector ( )x t  may also be interpreted as a sort of frequency distribution of probabilities. 
The reason is that 

( )     ( )
n n

i i
i 1 i 1

1w t 4 w t 1
4= =

= ⇒ ⋅ =∑ ∑  

For any relative weight vector ( )w t . The “uniform distribution vector” would be the one with all its components 
equal to 4 n , which mean that the relative weight vector may be interpreted as a sort of frequency distribution of 
probabilities, this distribution may be considered as the relative weight vector associated to that state. 
 

 
Figure 1 Relative Weight Vector associated to a certain state x, in a space of dimension 8. 
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5. Application 
Our algorithm has been used in several applications. In this paper, we take, as an example for validating the 
performance of the algorithm we propose, the problem of the recognition of the Arabian digits as the prototype 
vectors: 

  
 

 
 

  
 

 
 
 

  
 

  
 

 
Figure 2 Arabian digits 

 

Where the dimension n, of the pattern space is 28, and ξ1=[0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1], 
ξ2 = [1,1,1,1,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,1,0,0,0,1,1,1,1], and so on. After training, the weight vector is p = 1/14 
{53, 25, 25, 53, 11, -73, -73, 39, 11, -73, -73, 39, 39, 25, 25, 67, -17, -73, -73, 53, -17, -73, -73, 53, 11, 11, 11, 
67}.  

 
Figure 3 Arabian Digits Projections 

 

In figure 3 the reader may see the energy lines and theirs associated PE´s. The Arabian digits are in this way 
placed on the lines: r7, r16, r16, r13, r16, r15, r10, r20, r15, r18. And the associated PE´s are 1/7{1113,-3710}, 
1/7{3420,-2508}, 1/7{4470,-3278}, 1/7{3210,-3745}, 1/7{4050,-2970}, 1/7{2821,-2418}, 1/7{2133,-4029}, 
1/7{5548,-2044}, 1/7{4095,-3510}, 1/7{4539,-2403}. The problem now is how to obtain in an adaptive way the 
capacity parameters θ1,θ2,...,θ28, in order to obtain the Arabian digits as fixed points with the least number of 
parasitic points as possible. When the before dynamic equation is considered, a point ( )x t  whose energy 
projection belongs to the jr  line, is a fixed point if, and only if, the (capacity) parameter jθ  is an upper bound for 
all the relative weights ( )iw t  associated to the components of ( )x t . 

Once the training has finished, the relative weight vector of the prototypes could then be calculated using. If the 
energy projection of the prototype μξ  belongs to jr  and the largest of the components of ( )iw t  is taken as jθ : 
it is clear that the prototype μξ  will be a fixed point. But the problem is how to avoid that a point with high degree 
of correlation with a prototype but with all its relative weights components lower than the capacity parameter to 
skip away from this prototype. In our example, the number 2 is a prototype with 16 units components, in other 
words its energy projection is placed in the line 16r  and the capacity parameter 16θ  is equal to 0.0741306. If a 
little noise is added to the pattern (pattern in figure 4) and this noisily pattern (belonging to class 15r ) is given for 
retrieving: 
It may happen that the noisily pattern changes to other state quite different from its natural attractor (the 
number 2) The reason for that, is that the prototype number 6, see figure 5, belongs also to the class 15r  and the 
stability condition in this class was set very high. 
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Figure 4 Noisily Prototype 2 belonging to 15r  

 
 

 

Figure 5 Prototype 6 belonging to 15r  

The question is how to get that only the second component changes its state, when the Noisily Prototype 2, is 
given for retrieving. In other words, how to get all the neighbors (inside a give radius) of a prototype to be 
attracted by this prototype, see figure 6. The idea, proposed in this paper, made use of the deviation defined in 
[Giménez 2000]. When, in time t, the dynamic equation is applied to a component of the vector ( )x t , this 

component will change its state not only if the relative weight ( )iw t  is lower that the capacity parameter of its 
class. The deviation of the new state, in the case of change of sate, must be similar to the deviation of the 
prototypes in the new class. The degree of similarity may be measured by a coefficient μ . The coefficient μ  is 
handled in a dynamical way (the more is the time the higher is the coefficient). 

 
Figure 6 Neighbor of prototype 2 in r15 and r17 

Besides the weight vector, there is other set of parameters of the net. For every one class ir , the capacity 
parameter θ I and the deviation of the prototypes in this class are obtained. So the algorithm control not only if the 
new state is strongly correlate with some prototype in its class, the algorithm also control that the components in 
the new state must, with a high degree of probability, be placed in similar places as some prototype of the class. 
We have applied with to our example, obtaining that almost all the points inside a neighborhood of radius 1, of the 
prototypes, are attracted by these prototypes. The 10 Arabian digits are fixed points of the system, and almost all 
the 28 neighbor of any one of them were attracted by its attractor prototype. In figure 7, the number of points 
inside a neighborhood of radius 1, of the prototypes are expressed. 
 
 

24 → 1   22 → 6 
23 → 2   25 → 7 
25 → 3   25 → 8 
22 → 4   22 → 9 
27 → 5   21 → 0 

Figure 7 Prototype 6 belonging also to r15 
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6. Conclusion 

The weight parameters in the Hopfield network are not a free set of variables. They must fulfill a set of constrains 
which have been deduced trough a new re-interpretation of the net as Graph Formalisms. Making use of this 
constrains the state-vector has been classified in n classes according to the n different possible distances from 
any of the state-vectors to the zero vector. The (n×n) matrix of weights may also be reduced to an n-vector of 
weights. In this way the computational time and the memory space, required for obtaining the weights, is 
optimized and simplified. The degree of correlation from a pattern with the prototypes may be controlled by the 
dynamical value of two parameters: the capacity parameter θ  which is used for controlling the capacity of the net 
(it may be proved that the bigger is the θj component of θ, the lower is the number of fixed points located in the rj 
energy line) and the parameter μ which measures the deviation to the prototypes. A typical example has been 
exposed; the obtained results have proved to improve the obtained when the classical algorithm is applied. 
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