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ADMISSIBLE SUBSTITUTIONS IN SEQUENT CALCULI 
A. V. Lyaletski 

Abstract:  For first-order classical logic a new notion of admissible substitution is defined.  This notion allows 
optimizing the procedure of the application of quantifier rules when logical inference search is made in 
sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created 
that does not require a preliminary skolemization of initial formulas and that is efficiently comparable with 
methods exploiting the skolemization. Some results on its soundness and completeness are given. 
Keywords: completeness, first-order logic, quantifier rule, sequent calculus, skolemization, soundness  

Introduction 
Investigations in computer-oriented reasoning gave rise to the appearance of various methods for the proof 
search in the classical 1st order logic. Particularly, sequent calculi were suggested by Gentzen [1]. But their 
practical application as a logical technique (without preliminary skolemization) of the intelligent systems has 
not received wide use: preference is usually given to the resolution-type methods. This is explained by higher 
efficiency of the resolution-type methods as compared to sequent calculi, which is mainly connected with 
different possible orders of the quantifier rule applications in sequent  calculi while resolution-type methods, 
due to skolemization, are free from this deficiency.  
In its turn, the deduction process in sequent calculi reflects sufficiently well natural theorem-proving methods 
which, as a rule, do not include preliminary formula skolemization so that reasonings are performed within the 
scope of the signature of the initial theory. This feature of sequent calculi becomes important when some 
interactive mode of proof is developed since it is preferable to present the output information concerning the 
proof search in the form usual for man. That is now the problem of the efficient quantifier manipulation makes 
its appearance. 
When quantifier rules are applied, some substitution of selected terms for variables is made. To do this step of 
deduction sound, certain restrictions are put on the substitution. The substitution, satisfying these restrictions, 
is said to be admissible. Here we investigate the classical notion of admissible substitution and show how it 
can be modified so that efficient sequent calculi can be finally obtained. We use the calculus G [2] for the 
demonstration of the way of the construction of such a modification denoted by mG here. Note that when 
constructing mG, we don't touch upon any procedure of selection of propositional rules and terms substituted, 
focussing our attention on quantifier handling only. 

Genzen’s Notion of Admissible Substitutions  
Classical quantifier rules, substituting arbitrary structure terms when applied “from bottom to top", are usually 
of the following form [2]: 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3       (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3  
 
Γ1 → Γ2, A[t/x], ∃xA, Γ3        (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  

where the term t is required to be free for the variable x in the formula A. This restriction of the substitution of t 
for x gives Gentzen’s (classical) notion of an admissible substitution, which proves to be sufficient for the 
needs of the proof theory. But it becomes useless from the point of view of efficiency of computer-oriented 
theorem-proving methods. It is clear from the following example.  
Consider a sequent A1, A2 → B, where A1 is ∀x1∃y1(R1(x1) ∨ R2(y1)), A2 is ∀x2∃y2(R1(y2) ∨ R2(x2)), and B is 
∃x3∀y3(R2(x3) ∨ R3(y3)). The provability of this sequent in calculus G will is established below, while here we 
notice that quantifier rules must be applied to all the quantifiers occurring in A1, A2, and B. Therefore, classical 
notion of admissible substitution yields 90 (= 6!/(2!*2!*2!)) different orders of the quantifier rule applications 
("from bottom to top") to the sequent A1, A2 → B. It is clear that resolution type methods allow avoiding this 
redundant work. 
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Kanger’s Notion of the Admissible Substitutions 
To optimize procedure of the applications of quantifier rules, S.Kanger suggested in [2] his calculus of 
Gentzen type, denoted here by K. In calculus K a "pattern" of a deduction tree is first constructed with the help 
of special variables, the so called parameters and dummies.  At some times an attempt is made to convert a 
"pattern" into proof tree to complete the deduction process.  In case of failure, the process is continued. 
The main difference between K and G consists in a special modification of the above quantifier rules and in a 
certain splitting (in K) of the process of the “pattern" construction into stages.  In K the rules (∀: left) and (∃: 
right) are of the following form: 

Γ1,A[d/x],∀xA, Γ2 → Γ3  
------------------------------- 
    Γ1,∀xA,Γ2 → Γ3             d/t1,...,tn 
 
Γ1 → Γ2,A[d/x],∃xA,Γ3  
------------------------------- 
    Γ1 → Γ2,∃xA,Γ3             d/t1,...,tn 

where t1,...,tn are the terms occurring in the conclusion of the rules, d is the dummy, and d/t1,...,tn denotes that 
when an attempt is made to convert "pattern" into proof tree, the dummy d must be replaced by one of the 
terms t1,...,tn.  The replacement of dummies by terms is made in the end of every stage, and at every stage 
the rules are applied in a certain order. 
This scheme of the deduction construction in calculus K leads to a notion of the Kanger-admissible 
substitution, which is more efficient than the classical one. Thus in the above example it yields only 6 (=3!) 
variants of different possible orders of the quantifier rule applications (but none of these variants is 
preferable). Despite this, the Kanger-admissible substitutions still did not allow to attain the efficiency 
comparable with that when the skolemization is made. It is due to the fact that, as in case of the classical 
admissible substitution, it is required to select a certain order of the quantifier rule applications when an input 
sequent is deduced, and, if it proves to be unsuccessful, the other order of applications is tried, and so on. 

New Notion of Admissible Substitutions 
For constructing the modification mG of calculus G from [2], let us introduce a new notion of admissible 
substitutions in order to get rid of the dependence of the deduction efficiency in sequent calculi on different 
possible orders of quantifier rule applications. The main idea is to determine, proceeding from quantifier 
structures of formulas of an input sequent and a substitution under consideration, would there exists a 
sequence of desired quantifier rule application. (This notion was used in slightly modified form in [3].) 
Substitution is defined as a finite (maybe, empty) set of ordered pairs, every of which contains a variable and 
a term and is written in the form t/x, where x is the variable and t is the term of substitution [4]. 
We assume that besides usual variables there are two countable sets of special variables, namely of 
parameters and dummies. 
Let P be a set of sequences of parameters and dummies, and s be a substitution. Put  T(P,s)  =  {<z,t,p>: z is 
the variable of s, t is the term of s,p P, and z lies in p to the left of some parameter from t}. The substitution s 
is said to be admissible for P if and only if (1) the variables of s are only dummies and (2) in T(P,s) there are 
no elements <z1,t1,p1> ,..., <zn,tn,pn> such that t2/z1 ∈ s,...,tn/z(n-1) ∈ s, t1/zn ∈ s (n>0). 

Calculus mG 
As in the case of calculus G, its modification mG deals with formulas, except that in mG every formula from a 
sequent has a certain sequence of parameters and dummies. Therefore, it is convenient to define calculus 
mG by means of the pairs <p,A>,  where A is the formula and p - the sequence (word)  of parameters and 
dummies.  Also, it will be assumed that the empty sequence is always added to all formulas from the input 
sequent (that is, from the sequent to be proved). 
The rules of the calculus mG are the following. 
Propositional rules: 
Γ1,<p,A>,<p,B>,Γ2 → Γ3             Γ1 → Γ2,<p,A>,Γ3  Γ1 → Γ2,<p,B>,Γ3 
--------------------------------             ----------------------------------------------- 
Γ1,<p,A ∧ B>,Γ2 → Γ3                         Γ1 → Γ 2,<p,A ∧ B>,Γ3 
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Γ1,<p,A>, Γ2 → Γ3   Γ1 → Γ2,<p,B>,Γ3          Γ1 → Γ3,<p,A>,<p,B>,Γ2  
-------------------------------------------------              -------------------------------- 
         Γ1,<p,A ∨ B>,Γ2 → Γ3                                   Γ1 → Γ 2,<p,A ∨ B>,Γ3     
 

Γ1, Γ2 → <p,A>        <p,B>,Γ1,Γ2 → Γ3          <p,A>,Γ1 → Γ3,<p,B>,Γ2  
-------------------------------------------------             -------------------------------- 
         Γ1,<p,A ⊃ B>,Γ2 → Γ3                                    Γ1 → Γ 2,<p,A ⊃ B>,Γ3   
 

 Γ1, Γ2 → <p,A>,Γ3                     <p,A>,Γ1 → Γ2,Γ3  
-------------------------                   --------------------------     
Γ1,<p,¬A>,Γ2 → Γ3                   Γ1 → Γ 2,<p,¬A>,Γ3   
 

Quantifier rules: 
Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
 

Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
 

Γ1 → Γ2,<pz,A[z/x]>, Γ3                        (∀: right’)  
----------------------------------------- 
          Γ1 → Γ2,<p,∀xA>,Γ3   
 

Γ1, <pz,A[z/x]>,Γ2 → Γ3                        (∃: left’) 
------------------------------- 
Γ1,<p,∃xA>,Γ2 → Γ3  
 

Here d is a new dummy, z is a new parameter, p is a sequence of parameters and dummies, Γ1, Γ2, and Γ3 
are arbitrary sequences of pairs, consisting of sequences (of dummies and parameters) and formulas, A, B 
are arbitrary formulas. 
Applying first rules "from bottom to top" to the input sequent and afterwards to its "heirs", and so on, we finally 
obtain a so-called deduction tree. 
A deduction tree D is called a proof tree for the input sequent (in mG) if and only if there exists a substitution 
of terms for variables, s, such that (1) s is admissible for set of all sequences of parameters and dummies 
from D and (2) after application of s to the formulas from all upper sequents of D we obtain axioms, that is, the 
sequents Γ1 → Γ2 such that Γ1 and Γ2 contain a common formula.  
The main result concerning the calculus mG is as follows. 
Theorem. Let A1,...,Am,B1,...,Bn  be the formulas of the 1st order  language.  There exists a proof tree for the 
input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in calculus mG if and only if there  exists a proof tree for the 
input sequent A1,...,Am → B1,...,Bn in calculus G. 
Proof.  
(=>) Let D be a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in the calculus mG,  and s 
be a  substitution,  which  converts all upper sequents of D into axioms and is admissible for set P of all  
sequences  of parameters and dummies from D. Without any loss of generality, we may assume that terms of  
s  do  not  contain  dummies for otherwise these dummies could be replaced by a constant, say, c0. 
Since s is admissible for P, it is possible to construct the following sequence p consisting of  parameters   and 
dummies which form the sequences of P: 
     (i)  every p'  P is a subsequence of p, and  
     (ii) the  substitution  s  is  admissible for {p} (i.e. there is no an element <z,t,p> T({p},s) such that t/z ∈ s. 
Such a sequence p may be generated, for example, by the convolution algorithm from [3], applied to a list of 
all the sequences from P provided that in the convolution algorithm are treated parameters as existence 
quantifiers, and dummies universal quantifiers. 
Property (i) of the sequence p and formulation of the propositional and quantifier rules permit to make the 
following assumption: 
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When D was constructed, propopositional and quantifier rules were applied ("from bottom to top") in the order 
that corresponds to looking through p from the left to right: i.e. when the first quantifier rule was applied, the 
first variable (a parameter or a dummy) of p was generated, when the second quantifier rule was applied, the 
second variable of p was generated, and so on. 
Now it is possible to covert the tree D into proof tree D' for the input sequent A1,...,Am → B1,...,Bn in calculus 
G. To do this, let us "repeat" the process of the construction of D in the above order p and execute the 
following transformations: 
     1) Suppose that in a processed node of D one of the following rules was applied: 
 

Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
or 
Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
 

and t/d s for  some term t. The term t is free for d in A, because the order of applications of quantifier rules is 
reflected by p, and property (ii) is satisfied. Therefore, the admissibility in the classical sense will be observed 
when the above rules (∀: left') and (∃: right') are replaced in D by rules (∀: left) and (∃: right) of the calculus 
G: and all other occurrences of d in D are replaced by t. 
 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3       (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3 
or  
Γ1 → Γ2, A[t/x], ∃xA, Γ3        (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  
 

     2) In other cases the rules of the calculus mG are replaced by their analogs from G by a simple deleting of 
sequences of parameters and dummies from these rules. 
It is evident that D' is a deduction tree in the calculus G. Furthermore, the way of conversion of D into D' 
allows making the conclusion that upper sequents of D' are axioms of the calculus G. Thus, D' is a proof tree 
for the input sequent A1,...,Am → B1,...,Bn in G. 
(<=)  Let D' be a proof tree for the input sequent A1,...,Am → B1,...,Bn in G. Convert D' into tree  D,  which, as 
be can seen bellow,  is a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in mG.  For this 
purpose "repeat" (“from bottom to top”) a process of construction of D', replacing in D' every rule application 
by its analog in mG and subsequently generating substitution s.  (Initially s is the empty substitution.)  
     1) If an applied rule is one of the following: 
 

Γ1, A[t/x],  ∀xA, Γ2 → Γ3      (∀: left) 
-------------------------------- 
    Γ1,∀xA, Γ2 → Γ3 
or  
Γ1 → Γ2, A[t/x], ∃xA, Γ3       (∃: right)  
------------------------------- 
    Γ1 → Γ2, ∃xA,Γ3  
 

then it is replaced by 
 

Γ1, <pd,A[d/x],>,<p,∀xA>,Γ2 → Γ3       (∀: left’) 
--------------------------------------------- 
            Γ1,<p,∀xA>,Γ2 → Γ3  
or 
Γ1, → Γ2,<pd,A[d/x]>,<p,∃xA>, Γ3        (∃: right’) 
-------------------------------------------- 
            Γ1, → Γ2,<p,∃xA>, Γ3 
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accordingly with adding  t/d to the existing substitution s, where d is a new dummy,  and with substituting  d  
for  those occurrences  of  t  into "heirs" of the formula A[t/x],  which appeared as  a  result  of  applying  of  a   
replaced   rule "inserting" the term t. 
     2) In all other cases replacement of the rules of G by the rules of mG is evident.  (Note that <,A1>,...,<,Am> 
→ <,B1>,...,<,Bn> is declared as input sequent of D.  The rules (∃: left) 
and  (∀: right)  may  be  considered  as those inserting  new parameters). 
Since D' is a proof tree in the calculus utilizing the classical notion of admissible substitution, then it is clear 
that the finally generated substitution s is admissible (in the new sense) for a set of all sequences of 
parameters and dummies from D. Therefore, D is a proof tree for the input sequent <,A1>,...,<,Am> → 
<,B1>,...,<,Bn> in mG. Q.E.D. 
Corollary 1. For any formulas A1 ,..., Am, B1 ,..., Bn  the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and 
only if there exists a proof tree for the input sequent <,A1>,...,<,Am> → <,B1>,...,<,Bn> in calculus mG. 
Proof.  
In accordance with [2] the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and only if there exists a proof 
tree for the input sequent A1,...,Am → B1,...,Bn in the calculus G.  On the basis of the Theorem the latter 
condition holds true if and only if a proof tree for the input sequent  <,A1>,...,<,Am> → <,B1>,...,<,Bn> can be 
constructed in calculus mG. Q.E.D. 
To demonstrate the deduction technique, consider the sequent A1,A2 → B from  the  above example and 
establish its provability in calculus G. To do this, construct a proof tree for the input sequent <,A1>,<,A2> → 
<,B> in calculus  mG and use the Theorem. 
Applying to the initial sequent only quantifier rules we can receive the following sequent: 
<d1z1,R1(d1) ∨ R2(z1)>,<,A1>,<d2z2,R1(z2) ∨ R2(d2)>,<,A2> → <d3z3,R2(d3) ∨ R3(x3)>, <d3z3, R2(d3) ∨ 
R3(x3)>,<,B>, where d1,...,d4 are dummies, z1,...,z4 are parameters. 
Now let us apply prorositional rules to the last sequent as long as they are applicable. As a result, we get a 
deduction tree D. If we generate the substitution s = {z2/d1, z3/d2, c0/d3,  z1/d4}  (c0  is a constant), then we can 
draw the following conclusions concerning s and D: 
     1) s is admissible for  the  set  of  all  sequences of dummies and parameters from D, and 
     2) every upper sequent from D may be transformed into axioms by applying of s to it. 
So, in accordance with the above Theorem the sequent A1,A2 → B is provable in the calculus G. Q.E.D. 

Some Reconstruction of mG  
The formulation of the calculus mG shows that the order of the quantifier rule applications is immaterial. In the 
calculus mG the quantifier rules are needed to determine a quantifier structure of formulas from the input 
sequent. This observation gives us possibility to construct a modification mG' of the calculus mG, which 
contains the so-called doubling rules instead of all the quantifier rules. 
Doubling rules: 
Γ1,<pdz1...zk,A>,<pd'u1...uk,A[d'/d,u1/z1,...,uk/zk]>, Γ2 → Γ3           (D: left) 
--------------------------------------------------------------------------- 
                      Γ1,<pdz1...zk,A>,Γ2 → Γ3 
 

Γ1 → Γ2,<pdz1...zk,A>,<pd'u1...uk,A[d'/d,u1/z1,...,uk/zk]>,Γ3           (D: right) 
--------------------------------------------------------------------------- 
                      Γ1 → Γ2,<pdz1...zk,A>,Γ3  
Here p is a sequence  (maybe, empty) of parameters and dummies, the most right variable of which (in non-
empty case) is a parameter, d is a dummy, for i=1,...,k zi is a dummy or parameter,  and  ui  is  a  new  dummy  
or a parameter (in accordance with zi). 
In calculus mG' a deduction process starts with an input sequent of the form:  <p1,M1>,..., <pm,Mm> → 
<q1,N1>,...,<qn,Nn>, where M1 ,.., Mm, N1 ,..., Nn are formulas  without  quantifiers, and  p1,...,pm,q1,...,qn are 
sequences of parameters and dummies, which are determined by the formula  (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ 
Bn), tested for validability, by the following way: 
Let A’1 , ... , A’m, B’1, ..., B’n be some prefix normal forms of the formulas A1, ..., Am, B1, ..., Bn, respectively. 
Then for every i=1,...,m (j=1,...,n) Mi is a matrix of A’i (Nj  is a  matrix  of  B’j),  and  pi  (qj)  is  obtained by 
means of replacing  in  prefix  of  A’i  (B’j)  of   every   universal (existential)  quantifier  by  a  new  dummy  
and  of every existential (universal) quantifier by a new parameter.  
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     All other notions (addmissible substitutions, deduction trees, proof trees, and so on) are the same as in the 
case of the calculus mG. 
     Corollary 2.  For any formulas A1, ..., Am, B1, ..., Bn the formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if 
and only if  there exists a proof tree for the input  sequent <p1,M1>,...,<pm,Mm> → <q1,N1>,...,<qn,Nn> in the 
calculus mG'. 
Proof.  
The formula (A1 ∧ ... ∧ Am) ⊃ (B1 ∨ ... ∨ Bn) is valid if and only if (A’1 ∧ ... ∧ A’m) ⊃ (B’1 ∨ ... ∨ B’n) is valid, 
where A’1 , ... , A’m, B’1, ..., B’n are prefix normal forms of A1, ..., Am, B1, ..., Bn, respectively. It is easy to see 
that a proof tree for the input sequent <p1,M1>,...,<pm,Mm> → <q1,N1>,...,<qn,Nn> in mG' may  be  constructed 
on the basis of a proof tree for the input sequent <,A’1>, ... , <,A’m> → <,B’1>,...,<,B’n> and vice versa. To 
complete the proof, use Corollary 1. Q.E.D. 
Remark. In calculus mG', the quantifier structures of formulas A1, ..., Am, B1, ..., Bn are taken into account by 
means of sequences p1, ..., pm, q1, ..., qn. Selection of sequences for determination  of  quantifier  
dependencies does not play a principal role and was made for the  purpose  of  visualizing and  simplifying  of  
the  subject matter. It is possible to construct a (correct and complete) version of calculus mG' using  analogs  
of  "schemes" [5] instead of sequences (which also consist  of  parameters  and  dummies  and  reflect  the 
quantifier  structures  of  initial formulas more exactly) and modifying the rules (D: left) and (D: right). Observe 
also that Herbrand theorem in the form A from [5] may be easily obtained on the basis of a correctness and 
completeness of the version of calculus mG'. 

Conclusion 
In this paper the questions of implementation of computer-oriented sequent calculi are not considered 
because the development of efficient calculi requires optimizing the order of the propositional rule applications 
and selecting a method for generating of terms which may produce a proof tree. Bypassing details observe 
that for this purpose the unification algorithm combined with the introduced notion of admissible substitution is 
suitable. It was the approach that investigated at the level of modern vision [7] of the Evidence Algorithm 
programme, EA, advances by V. Glushkov. By now, the first version of the System for Automated Deduction, 
SAD, has been implemented (see Web-site ‘http://ea.unicyb.kiev.ua’). This implementation is based on a 
number of papers devoted to EA and SAD (see, for example, [8-10]). 
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