IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2005 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1239

Title: Renewal Processes of Mittag-Leffler and Wright Type
Authors: Mainardi, Francesco
Gorenflo, Rudolf
Vivoli, Alessandro
Keywords: Fractional Derivative
Mittag-Leffler Function
Wright Function
Renewal Theory
Poisson Process
Fractional Diffusion
26A33
33E12
33E20
44A10
44A35
60G50
60J05
60K05
Issue Date: 2005
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 8, No 1, (2005), 07p-38p
Abstract: After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each other, furthermore consider corresponding renewal processes with reward and numerically their long-time behaviour.
Description: 2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.
URI: http://hdl.handle.net/10525/1239
ISSN: 1311-0454
Appears in Collections:2005

Files in This Item:

File Description SizeFormat
fcaa-vol8-num1-2005-07p-38p.pdf582.67 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback