IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2005 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1241

Title: Linear Fractional PDE, Uniqueness of Global Solutions
Authors: Schäfer, Ingo
Kempfle, Siegmar
Nolte, Bodo
Keywords: Functional Calculus
Fractional Calculus
26A33
47A60
30C15
Issue Date: 2005
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 8, No 1, (2005), 53p-62p
Abstract: In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.
Description: Mathematics Subject Classification: 26A33, 47A60, 30C15.
URI: http://hdl.handle.net/10525/1241
ISSN: 1311-0454
Appears in Collections:2005

Files in This Item:

File Description SizeFormat
fcaa-vol8-num1-2005-53p-62p.pdf159.87 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback