BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2009 >

Please use this identifier to cite or link to this item:

Title: Bounds for Fractional Powers of Operators in a Hilbert Space and Constants in Moment Inequalities
Authors: I. Gil’, Michael
Keywords: Linear Operator
Fractional Powers
Moment Inequality
Dissipative Operator
Compact Hermitian Component
Compact Inverse
Issue Date: 2009
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 12, No 1, (2009), 57p-69p
Abstract: We derive bounds for the norms of the fractional powers of operators with compact Hermitian components, and operators having compact inverses in a separable Hilbert space. Moreover, for these operators, as well as for dissipative operators, the constants in the moment inequalities are established.
Description: Mathematics Subject Classification: 47A56, 47A57,47A63
ISSN: 1311-0454
Appears in Collections:2009

Files in This Item:

File Description SizeFormat
fcaa-vol12-num1-2009-57p-69p.pdf192.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License