IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2009 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1308

Title: On Hankel Transform of Generalized Mathieu Series
Authors: Tomovski, Živorad
Keywords: Integral Representations
Mathieu Series
Fourier Transform
Bessel Function
Hankel Transform
Fox-Wright Function
Sonine-Schafheitlin Formula
Fox H-Function
33E20
44A10
33C10
33C20
44A20
Issue Date: 2009
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 12, No 1, (2009), 97p-107p
Abstract: By using integral representations for several Mathieu type series, a number of integral transforms of Hankel type are derived here for general families of Mathieu type series. These results generalize the corresponding ones on the Fourier transforms of Mathieu type series, obtained recently by Elezovic et al. [4], Tomovski [19] and Tomovski and Vu Kim Tuan [20].
Description: Mathematics Subject Classification: Primary 33E20, 44A10; Secondary 33C10, 33C20, 44A20
URI: http://hdl.handle.net/10525/1308
ISSN: 1311-0454
Appears in Collections:2009

Files in This Item:

File Description SizeFormat
fcaa-vol12-num1-2009-97p-107p.pdf174.63 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback