IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Fractional Calculus and Applied Analysis >
2007 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1322

Title: Generalized Fractional Evolution Equation
Authors: Da Silva, J. L.
Erraoui, M.
Ouerdiane, H.
Keywords: Generalized Functions
Convolution Product
Generalized Gross Laplacian
Riemann-Liouville Derivative
Caputo Derivative
46F25
26A33
46G20
Issue Date: 2007
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Fractional Calculus and Applied Analysis, Vol. 10, No 4, (2007), 375p-398p
Abstract: In this paper we study the generalized Riemann-Liouville (resp. Caputo) time fractional evolution equation in infinite dimensions. We show that the explicit solution is given as the convolution between the initial condition and a generalized function related to the Mittag-Leffler function. The fundamental solution corresponding to the Riemann-Liouville time fractional evolution equation does not admit a probabilistic representation while for the Caputo time fractional evolution equation it is related to the inverse stable subordinators.
Description: 2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
URI: http://hdl.handle.net/10525/1322
ISSN: 1311-0454
Appears in Collections:2007

Files in This Item:

File Description SizeFormat
fcaa-vol10-num4-2007-375p-398p.pdf236.02 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback