IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
Proceedings >
REMIA >
REMIA 2010 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1443

Title: Geometry over two Arbitrary Arithmetic Progressions
Authors: Stanilov, Grozio
Filipova, Liudmila
Keywords: Arithmetic Progression
Klein Geometry
Invariant
Cross Product
Group
Issue Date: 22-Nov-2010
Publisher: University Press "Paisii Hilendarski", Plovdiv
Abstract: We consider quadrate matrices with elements of the first row members of an arithmetic progression and of the second row members of other arithmetic progression. We prove the set of these matrices is a group. Then we give a parameterization of this group and investigate about some invariants of the corresponding geometry. We find an invariant of any two points and an invariant of any sixth points. All calculations are made by Maple.
URI: http://hdl.handle.net/10525/1443
ISBN: 9789544236489
Appears in Collections:REMIA 2010

Files in This Item:

File Description SizeFormat
sA 15. Stanilov.pdf50.91 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback