IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
Proceedings >
REMIA >
REMIA 2010 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1461

Title: Rolle's Theorem for Complex Polynomials with Real Coefficients
Authors: Sendov, Blagovest
Keywords: Zeros and Critical Points of Polynomials
Apolarity
Apolar Locus
Polar Derivative
Polar Locus
Complex Rolle's Theorem
Issue Date: 22-Nov-2010
Publisher: University Press "Paisii Hilendarski", Plovdiv
Abstract: Let p(z) be an algebraic polynomial of degree n ¸ 2 with real coefficients and p(i) = p(¡i). According to Grace-Heawood Theorem, at least one zero of the derivative p0(z) is on the disk with center in the origin and radius cot(¼=n). In this paper is found the smallest domain containing at leas one zero of the derivative p0(z).
URI: http://hdl.handle.net/10525/1461
ISBN: 9789544236489
Appears in Collections:REMIA 2010

Files in This Item:

File Description SizeFormat
s0 10. Sendov.pdf51.53 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback