IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Serdica Mathematical Journal >
2005 >
Volume 31 Number 3 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1767

Title: A Geometrical Construction for the Polynomial Invariants of some Reflection Groups
Authors: Sarti, Alessandra
Keywords: Polynomial Invariants
Reflection and Coxeter Groups
Group Actions on Varieties
Issue Date: 2005
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 31, No 3, (2005), 229p-242p
Abstract: We construct invariant polynomials for the reflection groups [3, 4, 3] and [3, 3, 5] by using some special sets of lines on the quadric P1 × P1 in P3. Then we give a simple proof of the well known fact that the ring of invariants are rationally generated in degree 2,6,8,12 and 2,12,20,30.
Description: 2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.
URI: http://hdl.handle.net/10525/1767
ISSN: 1310-6600
Appears in Collections:Volume 31 Number 3

Files in This Item:

File Description SizeFormat
sjm-vol31-num3-2005-p229-p242.pdf625.12 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback