IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
Union of Bulgarian Mathematicians >
Union of Bulgarian Mathematicians 2010 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1842

Title: Nonlocal Boundary Value Problems for Two-Dimensional Potential Equation on a Rectangle
Other Titles: Нелокална гранична задача за двумерното уравнение на потенциала върху правоъгълник
Authors: Dimovski, Ivan
Tsankov, Yulian
Keywords: Nonlocal BVP
Right-Inverse Operator
Extended Duamel Principle
Generalized Solution
Convolution
Multiplier
Multipliers Fraction
Issue Date: 2010
Publisher: Union of Bulgarian Mathematicians
Citation: Union of Bulgarian Mathematicians, Vol. 39, No 1, (2010), 105p-113p
Abstract: An extension of Duhamel principle, known for evolution equations, is proposed. An operational calculus approach for explicit solution of these problems is developed. A classical example of such BVP is the Bitsadze – Samarskii problem.
Description: Иван Димовски, Юлиан Цанков - Предложено е разширение на принципa на Дюамел. За намиране на явно решение на нелокални гранични задачи от този тип е развито операционно смятане основано върху некласическа двумерна конволюция. Пример от такъв тип е задачата на Бицадзе-Самарски.
URI: http://hdl.handle.net/10525/1842
ISBN: 1313-3330
Appears in Collections:Union of Bulgarian Mathematicians 2010

Files in This Item:

File Description SizeFormat
smb-vol39-num1-2010-105p-113p.pdf174.8 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback