IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
Union of Bulgarian Mathematicians >
Union of Bulgarian Mathematicians 2010 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1850

Title: Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components
Other Titles: Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти
Authors: Todorov, Vladimir
Stoev, Petar
Keywords: Totally Disconnected N-Dimensional Space
Issue Date: 2010
Publisher: Union of Bulgarian Mathematicians
Citation: Union of Bulgarian Mathematicians, Vol. 39, No 1, (2010), 160p-161p
Abstract: The quasi-component Q(x) of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called a true quasi-component. In this note we give a simple construction of (at least) (n − 1)-dimensional totally disconnected subspace Y of a given n-dimensional separable metric space X such that every quasi-component in Y is a single point. *2000 Mathematics Subject Classification: 17C55.
Description: Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи.
URI: http://hdl.handle.net/10525/1850
ISBN: 1313-3330
Appears in Collections:Union of Bulgarian Mathematicians 2010

Files in This Item:

File Description SizeFormat
smb-vol39-num1-2010-160p-161p.pdf92.69 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback