IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
Union of Bulgarian Mathematicians >
Union of Bulgarian Mathematicians 2012 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1940

Title: Optimal Control of Heterogeneous Systems
Other Titles: Оптимално управление на хетерогенни системи
Authors: Tsachev, Tsvetomir
Keywords: Optimal Control
Continuous Heterogeneous Dynamical Systems
Applications in Economics and Epidemiology
Issue Date: 2012
Publisher: Union of Bulgarian Mathematicians
Citation: Union of Bulgarian Mathematicians, Vol. 41, No 1, (2012), 70p-82p
Abstract: The present paper is a survey on some results on optimal control of continuous heterogeneous systems, which were recently published in periodic journals. A dynamical system is called heterogeneous if each of its elements has specific dynamics. The heterogeneity of the systems we consider is described by a one- or two-dimensional parameter – each element of the system corresponds to a specific value of the parameter. The heterogeneous dynamical systems are used to model processes in economics, epidemiology, biology, social security (preventing the use of illicit drugs) etc. Here we consider models of optimal investment in education at the macroeconomic level [11], of restricting the damage caused by the spread of HIV [9], of markets for emission permits [3, 4] and optimal macroeconomic growth with endogenous improvement of the cutting-edge technologies [1]. *2010 Mathematics Subject Classification: 49K20, 92C60, 35Q91, 37N40, 91B69.
Description: Цветомир Цачев - В настоящия доклад се прави преглед на някои резултати от областта на оптималното управление на непрекъснатите хетерогенни системи, публикувани в периодичната научна литература в последните години. Една динамична система се нарича хетерогенна, ако всеки от нейните елементи има собствена динамиката. Тук разглеждаме оптимално управление на системи, чиято хетерогенност се описва с едномерен или двумерен параметър – на всяка стойност на параметъра отговаря съответен елемент на системата. Хетерогенните динамични системи се използват за моделиране на процеси в икономиката, епидемиологията, биологията, опазване на обществената сигурност (ограничаване на използването на наркотици) и др. Тук разглеждаме модел на оптимално инвестиране в образование на макроикономическо ниво [11], на ограничаване на последствията от разпространението на СПИН [9], на пазар на права за въглеродни емисии [3, 4] и на оптимален макроикономически растеж при повишаване на нивото на върховите технологии [1]. Ключови думи: оптимално управление, непрекъснати хетерогенни динамични системи, приложения в икономиката и епидемиолегията
URI: http://hdl.handle.net/10525/1940
ISBN: 1313-3330
Appears in Collections:Union of Bulgarian Mathematicians 2012

Files in This Item:

File Description SizeFormat
smb-vol41-num1-2012-70p-82p.pdf191.48 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License