IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
Union of Bulgarian Mathematicians >
Union of Bulgarian Mathematicians 2012 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/1946

Title: About Homogeneous Spaces and the Baire Property in Remainders
Other Titles: Относно хомогенни пространства и свойството на Бер в прираста
Authors: Arhangel’skii, Alexander
Choban, Mitrofan
Mihaylova, Ekaterina
Keywords: Homogeneous Space
Dissentive Space
Extension
Baire Property
Moscow Space
Issue Date: 2012
Publisher: Union of Bulgarian Mathematicians
Citation: Union of Bulgarian Mathematicians, Vol. 41, No 1, (2012), 134p-138p
Abstract: In this paper we continue the study of the notions of o-homogeneous space, lo-homogeneous space, do-homogeneous space and co-homogeneous space. Theorem 5.1 affirms that a co-homogeneous space X is a Moscow space provided it contains a Gδ - dense Moscow subspace Y. ∗2000 Mathematics Subject Classification: 54A35, 63E35, 54D50.
Description: Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - В съобщението е продължено изследването на понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако co-хомогенното пространство X съдържа Gδ -гъсто Московско подпространство, тогава X е Московско пространство.
URI: http://hdl.handle.net/10525/1946
ISBN: 1313-3330
Appears in Collections:Union of Bulgarian Mathematicians 2012

Files in This Item:

File Description SizeFormat
smb-vol41-num1-2012-134p-138p.pdf129.88 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License