IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Pliska Studia Mathematica Bulgarica >
1998 Volume 12 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/2131

Title: Well-Behavior, Well-Posedness and Nonsmooth Analysis
Authors: Penot, Jean-Paul
Keywords: Asymptotical Well-Behavior
Conditioning
Critical Sequence
Error Bounds
Gage
Metrically Well-Set
Minimizing Sequence
Nice Behavior
Palais-Smale Condition
Ptak Function
Quasi-Inverse
Stationary Sequence
Well-Behavior
Well-Posed Problem
Issue Date: 1998
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Pliska Studia Mathematica Bulgarica, Vol. 12, No 1, (1998), 141p-190p
Abstract: We survey the relationships between well-posedness and well-behavior. The latter notion means that any critical sequence (xn) of a lower semicontinuous function f on a Banach space is minimizing. Here “critical” means that the remoteness of the subdifferential ∂f(xn) of f at xn (i.e. the distance of 0 to ∂f(xn)) converges to 0. The objective function f is not supposed to be convex or smooth and the subdifferential ∂ is not necessarily the usual Fenchel subdifferential. We are thus led to deal with conditions ensuring that a growth property of the subdifferential (or the derivative) of a function implies a growth property of the function itself. Both qualitative questions and quantitative results are considered.
Description: AMS subject classification: 90C30, 90C33.
URI: http://hdl.handle.net/10525/2131
ISSN: 0204-9805
Appears in Collections:1998 Volume 12

Files in This Item:

File Description SizeFormat
Pliska-12-1998-141-190.pdf1.45 MBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback