BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Serdica Mathematical Journal >
2006 >
Volume 32, Number 1 >

Please use this identifier to cite or link to this item:

Title: Little G. T. for lp-lattice summing operators
Authors: Mezrag, Lahcène
Keywords: Banach Lattice
Completely Bounded Operator
Convex Operator
lp-lattice Summing Operato
Operator Space
Issue Date: 2006
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 32, No 1, (2006), 39p-56p
Abstract: In this paper we introduce and study the lp-lattice summing operators in the category of operator spaces which are the analogous of p-lattice summing operators in the commutative case. We study some interesting characterizations of this type of operators which generalize the results of Nielsen and Szulga and we show that Λ l∞( B(H) ,OH) ≠ Λ l2( B( H) ,OH), in opposition to the commutative case.
Description: 2000 Mathematics Subject Classification: 46B28, 47D15.
ISSN: 1310-6600
Appears in Collections:Volume 32, Number 1

Files in This Item:

File Description SizeFormat
2006-039-056.pdf472.59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License