IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Pliska Studia Mathematica Bulgarica >
2013 Volume 22 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/2513

Title: Lp Microlocal Supercritical Markov Branching Processes with Non-Homogeneous Poisson Immigration
Authors: Hyrien, Ollivier
Mitov, Kosto V.
Yanev, Nikolay M.
Keywords: Branching processes
Immigration
Poisson process
Limit theorems
Issue Date: 2013
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Pliska Studia Mathematica Bulgarica, Vol. 22, No 1, (2013), 57p-70p
Abstract: The paper proposes an extension of Sevastyanov (1957) model allowing an immigration in the moments of a homogeneous Poisson process. Markov branching processes with time-nonhomogeneous Poisson immigration are considered as models in cell proliferation kinetics and limit theorems are proved in the supercritical case. Some of the limiting results can be interpreted as generalizations of the classical result of Sevastyanov (1957) and new effects are obtained due to the non-homogeneity.
Description: 2010 Mathematics Subject Classification: 60J80.
URI: http://hdl.handle.net/10525/2513
ISSN: 0204-9805
Appears in Collections:2013 Volume 22

Files in This Item:

File Description SizeFormat
Pliska-22-2013-057-070.pdf419.19 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback