BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Serdica Mathematical Journal >
2011 >
Volume 37, Number 1 >

Please use this identifier to cite or link to this item:

Title: On Differential Inclusions with Unbounded Right-Hand Side
Authors: Benahmed, S.
Keywords: Fixed Point
Differential Inclusin
Measurable Selection
Issue Date: 2011
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 37, No 1, (2011), 1p-8p
Abstract: The classical Filippov's Theorem on existence of a local trajectory of the differential inclusion [\dot x](t) О F(t,x(t)) requires the right-hand side F(·,·) to be Lipschitzian with respect to the Hausdorff distance and then to be bounded-valued. We give an extension of the quoted result under a weaker assumption, used by Ioffe in [J. Convex Anal. 13 (2006), 353-362], allowing unbounded right-hand side.
Description: 2000 Mathematics Subject Classification: 58C06, 47H10, 34A60.
ISSN: 1310-6600
Appears in Collections:Volume 37, Number 1

Files in This Item:

File Description SizeFormat
2011-001-008.pdf419.52 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License