BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Serdica Mathematical Journal >
2011 >
Volume 37, Number 4 >

Please use this identifier to cite or link to this item:

Title: Polynomial automorphisms over finite fields: Mimicking tame maps by the Derksen group
Authors: Maubach, Stefan
Willems, Roel
Keywords: Polynomial Automorphisms
Permutation Groups
Tame Automorphism Group
Issue Date: 2011
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Mathematical Journal, Vol. 37, No 4, (2011), 305p-322p
Abstract: If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be "mimicked" by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen's theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22, x2,ј, xn). We show that Derksen's theorem is not true in characteristic p in general. However, we prove a modified, weaker version of Derksen's theorem over finite fields: we introduce the Derksen group DAn(Fq), n і 3, which is generated by the affine maps and one well-chosen nonlinear map, and show that DAn(Fq) mimicks any element of TAn(Fq). Also, we do give an infinite set E of non-affine maps which, together with the affine maps, generate the tame automorphisms in dimension 3 and up. We conjecture that such a set E cannot be finite. We consider the subgroups GLINn(k) and GTAMn(k). We prove that for k a finite field, these groups are equal if and only if k\not = F2. The latter result provides a tool to show that a map is not linearizable.
Description: 2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
ISSN: 1310-6600
Appears in Collections:Volume 37, Number 4

Files in This Item:

File Description SizeFormat
2011-305-322.pdf515.96 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License