BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Serdica Journal of Computing >
2015 >
Volume 9 Number 3-4 >

Please use this identifier to cite or link to this item:

Title: Combinatorial Computations on an Extension of a Problem by Pál Turán
Authors: Gaydarov, Petar
Delchev, Konstantin
Keywords: Irreducible Polynomials
Distance Sets
Finite Fields
Issue Date: 2015
Publisher: Institute of Mathematics and Informatics Bulgarian Academy of Sciences
Citation: Serdica Journal of Computing, Vol. 9, No 3-4, (2015), 257p-268p
Abstract: Turan’s problem asks what is the maximal distance from a polynomial to the set of all irreducible polynomials over Z. It turns out it is sufficient to consider the problem in the setting of F2. Even though it is conjectured that there exists an absolute constant C such that the distance L(f - g) <= C, the problem remains open. Thus it attracts different approaches, one of which belongs to Lee, Ruskey and Williams, who study what the probability is for a set of polynomials ‘resembling’ the irreducibles to satisfy this conjecture. In the following article we strive to provide more precision and detail to their method, and propose a table with better numeric results. ACM Computing Classification System (1998): H.1.1. *This author is partially supported by the High School Students Institute of Mathematics and Informatics.
ISSN: 1312-6555
Appears in Collections:Volume 9 Number 3-4

Files in This Item:

File Description SizeFormat
sjc-vol9-num3-4-2015-p257-p268.pdf126.02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License