BulDML at Institute of Mathematics and Informatics >
IMI Periodicals >
Scientific Reports >

Please use this identifier to cite or link to this item:

Title: Skew Polynomial Rings with Binomial Relations
Authors: Gateva-Ivanova, Tatiana
Keywords: Department of Algebra
Issue Date: 14-Feb-1996
Publisher: Institute of Mathematics with Computer Center at the Bulgarian Academy of Sciences
Citation: Preprint
Series/Report no.: 1996;3
Abstract: In this paper we continue the study of a class of standard finitely presented quadratic al¬gebras A over a fixed field K, called binomial skew polynomial rings. We consider some combinatorial properties of the set of defining relations F and their implications for the al¬gebraic properties of A. We impose a condition, called (*), on F and prove that in this case A is a free module of finite rank over a strictly ordered Noetherian domain. We show that an analogue of the Diamond Lemma is true for one-sided ideals of a skew polynomial ring A with condition (*). We prove also, that if the set of defining relations F is square free, then condition (*) is necessary and sufficient for the existence of a finite Groebner basis of every one-sided ideal in A, and for left and right Noetherianness of A. As a corollary we find a class of finitely generated non-commutative semigroups which are left and right Noetherian.
Description: [Gateva-Ivanova Tatiana; Гатева-Иванова Татяна]
Appears in Collections:Scientific Reports

Files in This Item:

File Description SizeFormat
P-1996-03.pdf40.69 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0!   Creative Commons License