IMI-BAS BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Preprints >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/3380

Title: Explicit Description of AE Solution Sets to Parametric Linear Systems
Other Titles: Явно описание на AE множества от решения на параметрични линейни системи
Authors: Popova, Evgenija D.
Keywords: linear systems
dependent data
AE solution set
tolerable solution set
controllable solution set
Department of Biomathematics
Issue Date: Dec-2011
Publisher: Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences
Citation: Preprint
Series/Report no.: 2011;7
Abstract: Consider linear systems whose input data are linear functions of uncertain parameters varying within given intervals. We are interested in an explicit description of the so-called AE parametric solution sets (where all universally quantified parameters precede all existentially quantified ones) by a set of inequalities not involving the parameters. This work presents how to obtain explicit description of AE parametric solution sets by combining a modified Fourier-Motzkin-type elimination of existentially quantified parameters with the elimination of the universally quantified parameters. Some necessary (and sufficient) conditions for existence of non-empty AE parametric solution sets are discussed, as well as some properties of the parametric AE solution sets, e.g. shape of the solution set and some inclusion relations. Explicit description of particular classes of AE parametric solution sets (tolerable, controllable, any 2D) are given. Numerical examples illustrate the solution sets and their properties. Mathematics Subject Classification (2000): 65F05, 65G99.
Description: [Popova Evgenija D.; Попова Евгения Д.]
URI: http://hdl.handle.net/10525/3380
Appears in Collections:Preprints

Files in This Item:

File Description SizeFormat
P-2011-07.pdf13.16 MBAdobe PDFView/Open

 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0!   Creative Commons License