IMI-BAS
 

BulDML at Institute of Mathematics and Informatics >
IMI >
IMI Periodicals >
Serdica Mathematical Journal >
2000 >
Volume 26 Number 2 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10525/412

Title: Asymptotic Behaviour of Colength of Varieties of Lie Algebras
Authors: Mishchenko, S.
Zaicev, M.
Keywords: Lie Algebras With Polynomial Identities
Varieties Of Lie Algebras
Codimensions
Colength
Issue Date: 2000
Publisher: Institute of Mathematics and Informatics
Citation: Serdica Mathematical Journal, Vol. 26, No 2, (2000), 145p-154p
Abstract: We study the asymptotic behaviour of numerical characteristics of polynomial identities of Lie algebras over a field of characteristic 0. In particular we investigate the colength for the cocharacters of polynilpotent varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties with exponential and overexponential colength growth. We give the exact asymptotics for the colength of a product of two nilpotent varieties.
Description: This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.
URI: http://hdl.handle.net/10525/412
ISSN: 1310-6600
Appears in Collections:Volume 26 Number 2

Files in This Item:

File Description SizeFormat
sjm-vol26-num2-2000-p145-p154.pdf448.69 kBAdobe PDFView/Open

 



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2009  The DSpace Foundation - Feedback